National Engineering Research Center of Near-net-shape Forming for Metallic Materials, Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou 510640, China; Institute for Complex Materials, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, South China University of Technology, Guangzhou 510640, China.
Biomater Adv. 2022 Feb;133:112625. doi: 10.1016/j.msec.2021.112625. Epub 2021 Dec 27.
Beta-type titanium alloys are excellent candidates for biomedical applications because of their very low elastic modulus, excellent corrosion resistance, and biocompatibility. However, many traditional β-type titanium alloys exhibit low yield strength. In this study, a small amount of Si (3 and 5 at.%) was added to a Ti-35Nb-7Zr-5Ta (wt%, TNZT) biomedical alloy prepared via laser powder bed fusion (LPBF) to increase its yield strength. The Si addition resulted in a significant increase in the compression yield strength of the alloy (from 802 to 1282 MPa). Meanwhile, the elastic moduli of the TNZT alloys (48.7-60.6 GPa) with 3 and 5 at.% Si were much lower than that of the Ti-6Al-4 V alloy (110 GPa), which is used extensively in clinical applications. The microstructural analyses indicated that the ultrahigh-strength of the TNZT alloy containing Si was due to the presence of ultrafine (Ti, Nb, Zr)Si (S1) grains in the β-Ti matrix. In addition, thin shell-shaped S1 and (Ti, Nb, Zr)Si (S2) grains precipitated along the columnar β-Ti grain boundaries in the TNZT alloys containing 3 and 5 at.% Si, respectively. Moreover, the introduction of Si to the TNZT alloy significantly refined the grains, weakened the cubic texture, decreased surface roughness, and improved Vickers hardness. The ultrahigh strength of the Si-containing TNZT alloys was due to grain boundary strengthening and precipitation strengthening. In addition, in vitro studies with MC3T3-E1 cells revealed that the cytocompatibilities of the LPBF-fabricated TNZT and Si-containing TNZT alloys were equivalent and were better than that of the LPBF-fabricated Ti-6Al-4 V alloy. In particular, the TNZT alloy with 3 at.% Si showed the best elastic modulus (48.7 ± 1.0 GPa), yield strength (1151 ± 17 MPa), and cell biological response among all the alloys investigated in this study, and hence was found to be a suitable candidate for application in load-bearing bone implants.
β 型钛合金因其极低的弹性模量、优异的耐腐蚀性和生物相容性而成为生物医学应用的优秀候选材料。然而,许多传统的β型钛合金表现出较低的屈服强度。在本研究中,通过激光粉末床熔合(LPBF)制备 Ti-35Nb-7Zr-5Ta(wt%,TNZT)生物医学合金,添加少量 Si(3 和 5 at.%)来提高其屈服强度。Si 的添加使合金的压缩屈服强度显著提高(从 802 MPa 提高到 1282 MPa)。同时,含 3 和 5 at.% Si 的 TNZT 合金的弹性模量(48.7-60.6 GPa)远低于广泛用于临床应用的 Ti-6Al-4 V 合金(110 GPa)。微观结构分析表明,含 Si 的 TNZT 合金具有超高强度,是由于β-Ti 基体中存在超细化(Ti、Nb、Zr)Si(S1)晶粒。此外,在含 3 和 5 at.% Si 的 TNZT 合金中,分别沿柱状β-Ti 晶粒界析出薄壳状 S1 和(Ti、Nb、Zr)Si(S2)晶粒。此外,Si 的引入显著细化了晶粒,削弱了立方织构,降低了表面粗糙度,提高了维氏硬度。含 Si 的 TNZT 合金的超高强度归因于晶界强化和析出强化。此外,与 MC3T3-E1 细胞的体外研究表明,LPBF 制造的 TNZT 和含 Si 的 TNZT 合金的细胞相容性与 LPBF 制造的 Ti-6Al-4 V 合金相当,且优于后者。特别是,含 3 at.% Si 的 TNZT 合金具有最佳的弹性模量(48.7±1.0 GPa)、屈服强度(1151±17 MPa)和细胞生物学响应,是用于承重骨植入物的合适候选材料。