Suppr超能文献

基于基因表达数据的可解释机器学习识别儿科系统性红斑狼疮亚型。

Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data.

机构信息

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland.

出版信息

Sci Rep. 2022 May 6;12(1):7433. doi: 10.1038/s41598-022-10853-1.

Abstract

Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning (RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) blood expression dataset, with the goal of developing gene networks to separate low and high disease activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting that the gene sets identified may further the understanding of gene networks that act in concert to drive disease progression. This included roles for genes (i) induced by interferons (IFI35 and OTOF), (ii) key to SLE cell types (KLRB1 encoding CD161), or (iii) with roles in autophagy and NF-κB pathway responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification.

摘要

转录组分析常用于识别患者和对照之间、或个体在疾病过程中的差异表达基因。这些方法虽然有效,但不能包含驱动疾病的基因的组合效应。我们将基于规则的机器学习 (RBML) 模型和规则网络 (RN) 应用于现有的儿科系统性红斑狼疮 (SLE) 血液表达数据集,旨在开发基因网络以区分低和高疾病活动度 (DA1 和 DA3)。该模型的准确性为 81%,可区分 DA1 和 DA3,无监督层次聚类揭示了更多与免疫轴相关或疾病发作状态的亚组。这些亚组与临床变量相关,表明鉴定的基因集可能进一步了解协同作用以推动疾病进展的基因网络。这包括受干扰素诱导的基因 (IFI35 和 OTOF)、(ii) 对 SLE 细胞类型至关重要的基因 (编码 CD161 的 KLRB1)、或 (iii) 在自噬和 NF-κB 途径反应中具有作用的基因 (CKAP4)。如这里所示,RBML 方法有可能从异质疾病中揭示新的基因模式,从而促进患者的临床和治疗分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c60/9076598/c71d687d1265/41598_2022_10853_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验