文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习模型在系统性红斑狼疮中的应用。

Application of Machine Learning Models in Systemic Lupus Erythematosus.

机构信息

Lupus Clinic, Rheumatology, Dipartimento di Scienze Cliniche Internistiche Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Viale del Policlinico 155, 00161 Rome, Italy.

出版信息

Int J Mol Sci. 2023 Feb 24;24(5):4514. doi: 10.3390/ijms24054514.


DOI:10.3390/ijms24054514
PMID:36901945
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10003088/
Abstract

Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease and is extremely heterogeneous in terms of immunological features and clinical manifestations. This complexity could result in a delay in the diagnosis and treatment introduction, with impacts on long-term outcomes. In this view, the application of innovative tools, such as machine learning models (MLMs), could be useful. Thus, the purpose of the present review is to provide the reader with information about the possible application of artificial intelligence in SLE patients from a medical perspective. To summarize, several studies have applied MLMs in large cohorts in different disease-related fields. In particular, the majority of studies focused on diagnosis and pathogenesis, disease-related manifestations, in particular Lupus Nephritis, outcomes and treatment. Nonetheless, some studies focused on peculiar features, such as pregnancy and quality of life. The review of published data demonstrated the proposal of several models with good performance, suggesting the possible application of MLMs in the SLE scenario.

摘要

系统性红斑狼疮(SLE)是一种全身性自身免疫性疾病,在免疫学特征和临床表现方面具有极强的异质性。这种复杂性可能导致诊断和治疗的延迟,从而对长期结果产生影响。在这种情况下,应用创新工具,如机器学习模型(MLM),可能会很有用。因此,本综述的目的是从医学角度向读者提供有关人工智能在 SLE 患者中可能应用的信息。总之,多项研究已将 MLM 应用于不同疾病相关领域的大型队列中。特别是,大多数研究侧重于诊断和发病机制、疾病相关表现,尤其是狼疮肾炎、结局和治疗。尽管如此,一些研究还是侧重于特定的特征,如妊娠和生活质量。已发表数据的综述表明,提出了一些性能良好的模型,表明 MLM 可能在 SLE 环境中得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65da/10003088/bf37601b49ba/ijms-24-04514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65da/10003088/ff95609f3914/ijms-24-04514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65da/10003088/bf37601b49ba/ijms-24-04514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65da/10003088/ff95609f3914/ijms-24-04514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65da/10003088/bf37601b49ba/ijms-24-04514-g002.jpg

相似文献

[1]
Application of Machine Learning Models in Systemic Lupus Erythematosus.

Int J Mol Sci. 2023-2-24

[2]
Systemic lupus in the era of machine learning medicine.

Lupus Sci Med. 2024-3-4

[3]
The role of antimalarial agents in the treatment of SLE and lupus nephritis.

Nat Rev Nephrol. 2011-10-18

[4]
Artificial neural network - an effective tool for predicting the lupus nephritis outcome.

BMC Nephrol. 2022-11-28

[5]
Letter to the editor: testing the effectiveness of MyPROSLE in classifying patients with lupus nephritis.

Brief Bioinform. 2023-9-20

[6]
CXCL13 as a new biomarker of systemic lupus erythematosus and lupus nephritis - from bench to bedside?

Clin Exp Immunol. 2015-1

[7]
Exploration of machine learning methods to predict systemic lupus erythematosus hospitalizations.

Lupus. 2022-10

[8]
Absolute quantification and characterization of oxylipins in lupus nephritis and systemic lupus erythematosus.

Front Immunol. 2022

[9]
Severe disease presentation and poor outcomes among pediatric systemic lupus erythematosus patients in South Africa.

Lupus. 2017-2

[10]
One year in review 2017: systemic lupus erythematosus.

Clin Exp Rheumatol. 2017

引用本文的文献

[1]
Data-Driven Cluster Analysis of Cerebrospinal Fluid Proteome and Associations with Clinical Phenotypes in Systemic Lupus Erythematosus.

ACR Open Rheumatol. 2025-9

[2]
Unsupervised machine learning identifies distinct SLE patient endotypes with differential response to belimumab.

Rheumatology (Oxford). 2025-8-1

[3]
Evaluation of machine learning methods for prediction of heart failure mortality and readmission: meta-analysis.

BMC Cardiovasc Disord. 2025-4-7

[4]
Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells.

Int J Mol Sci. 2023-12-29

[5]
Machine learning approaches to identify systemic lupus erythematosus in anti-nuclear antibody-positive patients using genomic data and electronic health records.

BioData Min. 2024-1-5

[6]
An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients.

iScience. 2023-9-25

本文引用的文献

[1]
Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis.

Front Immunol. 2022

[2]
Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus.

Front Immunol. 2022

[3]
Tract-based white matter hyperintensity patterns in patients with systemic lupus erythematosus using an unsupervised machine learning approach.

Sci Rep. 2022-12-9

[4]
Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning.

Comput Biol Med. 2023-1

[5]
Potential genetic biomarkers predict adverse pregnancy outcome during early and mid-pregnancy in women with systemic lupus erythematosus.

Front Endocrinol (Lausanne). 2022

[6]
Differential diagnosis of systemic lupus erythematosus and Sjögren's syndrome using machine learning and multi-omics data.

Comput Biol Med. 2023-1

[7]
Artificial neural network - an effective tool for predicting the lupus nephritis outcome.

BMC Nephrol. 2022-11-28

[8]
Gene Expression and Autoantibody Analysis Revealing Distinct Ancestry-Specific Profiles Associated With Response to Rituximab in Refractory Systemic Lupus Erythematosus.

Arthritis Rheumatol. 2023-5

[9]
Systemic lupus erythematosus phenotypes formed from machine learning with a specific focus on cognitive impairment.

Rheumatology (Oxford). 2023-11-2

[10]
The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索