Suppr超能文献

基于雷达和深度学习的实时活动识别的 Split BiRNN

Split BiRNN for real-time activity recognition using radar and deep learning.

机构信息

Ghent University, IDLab - imec, 9000, Ghent, Belgium.

出版信息

Sci Rep. 2022 May 6;12(1):7436. doi: 10.1038/s41598-022-08240-x.

Abstract

Radar systems can be used to perform human activity recognition in a privacy preserving manner. This can be achieved by using Deep Neural Networks, which are able to effectively process the complex radar data. Often these networks are large and do not scale well when processing a large amount of radar streams at once, for example when monitoring multiple rooms in a hospital. This work presents a framework that splits the processing of data in two parts. First, a forward Recurrent Neural Network (RNN) calculation is performed on an on-premise device (usually close to the radar sensor) which already gives a prediction of what activity is performed, and can be used for time-sensitive use-cases. Next, a part of the calculation and the prediction is sent to a more capable off-premise machine (most likely in the cloud or a data center) where a backward RNN calculation is performed that improves the previous prediction sent by the on-premise device. This enables fast notifications to staff if troublesome activities occur (such as falling) by the on-premise device, while the off-premise device captures activities missed or misclassified by the on-premise device.

摘要

雷达系统可以用于以保护隐私的方式进行人体活动识别。这可以通过使用深度神经网络来实现,深度神经网络能够有效地处理复杂的雷达数据。通常这些网络很大,并且在同时处理大量雷达流时,例如在医院监测多个房间时,不能很好地扩展。这项工作提出了一个框架,将数据处理分为两部分。首先,在现场设备(通常靠近雷达传感器)上执行前向递归神经网络(RNN)计算,该计算已经对执行的活动进行了预测,并且可以用于对时间敏感的用例。接下来,将计算和预测的一部分发送到更强大的场外机器(最有可能在云端或数据中心),在那里执行后向 RNN 计算,以改进现场设备发送的先前预测。这使得现场设备能够快速通知工作人员是否发生麻烦的活动(例如跌倒),而场外设备则可以捕获现场设备错过或分类错误的活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0285/9076655/35e3e120b0d5/41598_2022_8240_Fig1_HTML.jpg

相似文献

1
Split BiRNN for real-time activity recognition using radar and deep learning.
Sci Rep. 2022 May 6;12(1):7436. doi: 10.1038/s41598-022-08240-x.
2
Combined CNN and RNN Neural Networks for GPR Detection of Railway Subgrade Diseases.
Sensors (Basel). 2023 Jun 6;23(12):5383. doi: 10.3390/s23125383.
3
Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
Sensors (Basel). 2024 Apr 15;24(8):2530. doi: 10.3390/s24082530.
4
Driving Activity Recognition Using UWB Radar and Deep Neural Networks.
Sensors (Basel). 2023 Jan 10;23(2):818. doi: 10.3390/s23020818.
5
FMCW Radar Human Action Recognition Based on Asymmetric Convolutional Residual Blocks.
Sensors (Basel). 2024 Jul 15;24(14):4570. doi: 10.3390/s24144570.
6
Improving Radar Human Activity Classification Using Synthetic Data with Image Transformation.
Sensors (Basel). 2022 Feb 16;22(4):1519. doi: 10.3390/s22041519.
7
Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures.
Int J Environ Res Public Health. 2023 Jan 8;20(2):1123. doi: 10.3390/ijerph20021123.
8
Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
Sensors (Basel). 2023 Mar 16;23(6):3185. doi: 10.3390/s23063185.
10
An End-to-End Deep Learning Approach for State Recognition of Multifunction Radars.
Sensors (Basel). 2022 Jul 1;22(13):4980. doi: 10.3390/s22134980.

引用本文的文献

1
Intelligent Millimeter-Wave System for Human Activity Monitoring for Telemedicine.
Sensors (Basel). 2024 Jan 2;24(1):268. doi: 10.3390/s24010268.
2
Noncontact assessment for fatigue based on heart rate variability using IR-UWB radar.
Sci Rep. 2022 Aug 20;12(1):14211. doi: 10.1038/s41598-022-18498-w.

本文引用的文献

1
Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction.
Sensors (Basel). 2021 Feb 4;21(4):1064. doi: 10.3390/s21041064.
2
Combo loss: Handling input and output imbalance in multi-organ segmentation.
Comput Med Imaging Graph. 2019 Jul;75:24-33. doi: 10.1016/j.compmedimag.2019.04.005. Epub 2019 May 9.
3
Robust face recognition via sparse representation.
IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27. doi: 10.1109/TPAMI.2008.79.
4
Falls in the elderly.
Am Fam Physician. 2000 Apr 1;61(7):2159-68, 2173-4.
5
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验