School of Computing Science, Simon Fraser University, Canada; Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, USA.
Comput Med Imaging Graph. 2019 Jul;75:24-33. doi: 10.1016/j.compmedimag.2019.04.005. Epub 2019 May 9.
Simultaneous segmentation of multiple organs from different medical imaging modalities is a crucial task as it can be utilized for computer-aided diagnosis, computer-assisted surgery, and therapy planning. Thanks to the recent advances in deep learning, several deep neural networks for medical image segmentation have been introduced successfully for this purpose. In this paper, we focus on learning a deep multi-organ segmentation network that labels voxels. In particular, we examine the critical choice of a loss function in order to handle the notorious imbalance problem that plagues both the input and output of a learning model. The input imbalance refers to the class-imbalance in the input training samples (i.e., small foreground objects embedded in an abundance of background voxels, as well as organs of varying sizes). The output imbalance refers to the imbalance between the false positives and false negatives of the inference model. In order to tackle both types of imbalance during training and inference, we introduce a new curriculum learning based loss function. Specifically, we leverage Dice similarity coefficient to deter model parameters from being held at bad local minima and at the same time gradually learn better model parameters by penalizing for false positives/negatives using a cross entropy term. We evaluated the proposed loss function on three datasets: whole body positron emission tomography (PET) scans with 5 target organs, magnetic resonance imaging (MRI) prostate scans, and ultrasound echocardigraphy images with a single target organ i.e., left ventricular. We show that a simple network architecture with the proposed integrative loss function can outperform state-of-the-art methods and results of the competing methods can be improved when our proposed loss is used.
从不同的医学成像模式中同时分割多个器官是一项关键任务,因为它可用于计算机辅助诊断、计算机辅助手术和治疗计划。由于深度学习的最新进展,已经成功引入了几种用于医学图像分割的深度神经网络来实现这一目标。在本文中,我们专注于学习一个用于标记体素的深度多器官分割网络。特别是,我们研究了损失函数的关键选择,以便处理学习模型的输入和输出都存在的严重不平衡问题。输入不平衡是指输入训练样本中的类不平衡(即,前景小物体嵌入在大量背景体素中,以及大小不同的器官)。输出不平衡是指推理模型中的假阳性和假阴性之间的不平衡。为了在训练和推理过程中解决这两种类型的不平衡,我们引入了一种新的基于课程学习的损失函数。具体来说,我们利用 Dice 相似系数来防止模型参数处于不良的局部最小值,并通过使用交叉熵项来惩罚假阳性/假阴性,从而逐渐学习更好的模型参数。我们在三个数据集上评估了所提出的损失函数:具有 5 个目标器官的全身正电子发射断层扫描 (PET) 扫描、磁共振成像 (MRI) 前列腺扫描和具有单个目标器官(即左心室)的超声心动图图像。我们表明,具有所提出的综合损失函数的简单网络架构可以优于最先进的方法,并且当使用我们提出的损失时,可以提高竞争方法的结果。