Suppr超能文献

基于 CNN 和 RNN 神经网络的铁路路基病害探地雷达检测方法

Combined CNN and RNN Neural Networks for GPR Detection of Railway Subgrade Diseases.

机构信息

School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.

Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China.

出版信息

Sensors (Basel). 2023 Jun 6;23(12):5383. doi: 10.3390/s23125383.

Abstract

Vehicle-mounted ground-penetrating radar (GPR) has been used to non-destructively inspect and evaluate railway subgrade conditions. However, existing GPR data processing and interpretation methods mostly rely on time-consuming manual interpretation, and limited studies have applied machine learning methods. GPR data are complex, high-dimensional, and redundant, in particular with non-negligible noises, for which traditional machine learning methods are not effective when applied to GPR data processing and interpretation. To solve this problem, deep learning is more suitable to process large amounts of training data, as well as to perform better data interpretation. In this study, we proposed a novel deep learning method to process GPR data, the CRNN network, which combines convolutional neural networks (CNN) and recurrent neural networks (RNN). The CNN processes raw GPR waveform data from signal channels, and the RNN processes features from multiple channels. The results show that the CRNN network achieves a higher precision at 83.4%, with a recall of 77.3%. Compared to the traditional machine learning method, the CRNN is 5.2 times faster and has a smaller size of 2.6 MB (traditional machine learning method: 104.0 MB). Our research output has demonstrated that the developed deep learning method improves the efficiency and accuracy of railway subgrade condition evaluation.

摘要

车载探地雷达(GPR)已被用于铁路路基状况的无损检测和评估。然而,现有的 GPR 数据处理和解释方法大多依赖于耗时的人工解释,并且很少有研究应用机器学习方法。GPR 数据复杂、高维且冗余,尤其是存在不可忽视的噪声,传统的机器学习方法在应用于 GPR 数据处理和解释时效果不佳。为了解决这个问题,深度学习更适合处理大量的训练数据,并能更好地进行数据解释。在本研究中,我们提出了一种新的深度学习方法来处理 GPR 数据,即卷积循环神经网络(CRNN),它结合了卷积神经网络(CNN)和循环神经网络(RNN)。CNN 处理来自信号通道的原始 GPR 波形数据,RNN 处理来自多个通道的特征。结果表明,CRNN 网络的精度达到 83.4%,召回率为 77.3%。与传统的机器学习方法相比,CRNN 的速度快 5.2 倍,大小小 2.6MB(传统机器学习方法:104.0MB)。我们的研究成果表明,所开发的深度学习方法提高了铁路路基状况评估的效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cbf/10304807/111eb85c3070/sensors-23-05383-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验