Suppr超能文献

超高速撞击下纳米抛射体对单层/多层石墨烯的动态穿透行为

Dynamic penetration behaviors of single/multi-layer graphene using nanoprojectile under hypervelocity impact.

作者信息

Sun Weifu, Zhang Tao, Jiang Jun, Chen Pengwan

机构信息

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.

Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China.

出版信息

Sci Rep. 2022 May 6;12(1):7440. doi: 10.1038/s41598-022-11497-x.

Abstract

Single/multilayer graphene holds great promise in withstanding impact/penetration as ideal protective material. In this work, dynamic penetration behaviors of graphene has been explored using molecular dynamics simulations. The crashworthiness performance of graphene is contingent upon the number of layers and impact velocity. The variables including residual velocity and kinetic energy loss under different layers or different impact velocities have been monitored during the hypervelocity impact. Results show that there exists deviation from the continuum Recht-Ipson and Rosenberg-Dekel models, but these models tend to hold to reasonably predict the ballistic limit velocity of graphene with increasing layers. Besides, fractal theory has been introduced here and proven valid to quantitatively describe the fracture morphology. Furthermore, Forrestal-Warren rigid body model II still can well estimate the depth of penetration of multilayer graphene under a certain range of velocity impact. Finally, one modified model has been proposed to correlate the specific penetration energy with the number of layer and impact velocity.

摘要

单层/多层石墨烯作为理想的防护材料,在承受冲击/穿透方面具有巨大潜力。在这项工作中,利用分子动力学模拟研究了石墨烯的动态穿透行为。石墨烯的抗撞性能取决于层数和冲击速度。在超高速冲击过程中,监测了不同层数或不同冲击速度下的残余速度和动能损失等变量。结果表明,与连续介质Recht-Ipson模型和Rosenberg-Dekel模型存在偏差,但随着层数增加,这些模型倾向于合理预测石墨烯的弹道极限速度。此外,这里引入了分形理论并证明其可有效定量描述断裂形态。此外,在一定速度冲击范围内,Forrestal-Warren刚体模型II仍能很好地估计多层石墨烯的穿透深度。最后,提出了一个修正模型,将比穿透能量与层数和冲击速度联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3595/9076916/354d850645bf/41598_2022_11497_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验