Suppr超能文献

scIMC:用于基准测试、比较和可视化分析 scRNA-seq 数据插补方法的平台。

scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods.

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

School of Software, Shandong University, Jinan, China.

出版信息

Nucleic Acids Res. 2022 May 20;50(9):4877-4899. doi: 10.1093/nar/gkac317.

Abstract

With the advent of single-cell RNA sequencing (scRNA-seq), one major challenging is the so-called 'dropout' events that distort gene expression and remarkably influence downstream analysis in single-cell transcriptome. To address this issue, much effort has been done and several scRNA-seq imputation methods were developed with two categories: model-based and deep learning-based. However, comprehensively and systematically comparing existing methods are still lacking. In this work, we use six simulated and two real scRNA-seq datasets to comprehensively evaluate and compare a total of 12 available imputation methods from the following four aspects: (i) gene expression recovering, (ii) cell clustering, (iii) gene differential expression, and (iv) cellular trajectory reconstruction. We demonstrate that deep learning-based approaches generally exhibit better overall performance than model-based approaches under major benchmarking comparison, indicating the power of deep learning for imputation. Importantly, we built scIMC (single-cell Imputation Methods Comparison platform), the first online platform that integrates all available state-of-the-art imputation methods for benchmarking comparison and visualization analysis, which is expected to be a convenient and useful tool for researchers of interest. It is now freely accessible via https://server.wei-group.net/scIMC/.

摘要

随着单细胞 RNA 测序 (scRNA-seq) 的出现,一个主要的挑战是所谓的“缺失”事件,这些事件会扭曲基因表达,并显著影响单细胞转录组的下游分析。为了解决这个问题,已经做了很多努力,并开发了两种类型的 scRNA-seq 插补方法:基于模型和基于深度学习的方法。然而,全面系统地比较现有方法仍然缺乏。在这项工作中,我们使用六个模拟和两个真实的 scRNA-seq 数据集,从以下四个方面全面评估和比较了总共 12 种可用的插补方法:(i)基因表达恢复,(ii)细胞聚类,(iii)基因差异表达,和(iv)细胞轨迹重建。我们证明,在主要的基准比较下,基于深度学习的方法通常比基于模型的方法表现出更好的整体性能,这表明深度学习在插补方面的强大功能。重要的是,我们构建了 scIMC(单细胞插补方法比较平台),这是第一个集成所有可用的最先进的插补方法的在线平台,用于基准比较和可视化分析,预计将成为有兴趣的研究人员的便捷有用工具。现在可以通过 https://server.wei-group.net/scIMC/ 免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0cc/9122610/3f567a238d41/gkac317fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验