Suppr超能文献

DISC:一种基于半监督深度学习的单细胞转录组基因表达和结构的高可扩展和准确推断方法。

DISC: a highly scalable and accurate inference of gene expression and structure for single-cell transcriptomes using semi-supervised deep learning.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

出版信息

Genome Biol. 2020 Jul 10;21(1):170. doi: 10.1186/s13059-020-02083-3.

Abstract

Dropouts distort gene expression and misclassify cell types in single-cell transcriptome. Although imputation may improve gene expression and downstream analysis to some degree, it also inevitably introduces false signals. We develop DISC, a novel deep learning network with semi-supervised learning to infer gene structure and expression obscured by dropouts. Compared with seven state-of-the-art imputation approaches on ten real-world datasets, we show that DISC consistently outperforms the other approaches. Its applicability, scalability, and reliability make DISC a promising approach to recover gene expression, enhance gene and cell structures, and improve cell type identification for sparse scRNA-seq data.

摘要

辍学会扭曲单细胞转录组中的基因表达并错误分类细胞类型。尽管插补在某种程度上可以改善基因表达和下游分析,但它也不可避免地引入了错误信号。我们开发了 DISC,这是一种带有半监督学习的新型深度学习网络,可以推断出由辍学现象掩盖的基因结构和表达。在十个真实数据集上与七种最先进的插补方法进行比较,我们表明,DISC 始终优于其他方法。它的适用性、可扩展性和可靠性使其成为一种有前途的方法,可以恢复基因表达、增强基因和细胞结构,并改善稀疏 scRNA-seq 数据的细胞类型识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d25/7353747/9f81ffe8da20/13059_2020_2083_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验