Suppr超能文献

注意调制多分支卷积神经网络在新生儿脑组织分割中的应用。

Attention-modulated multi-branch convolutional neural networks for neonatal brain tissue segmentation.

机构信息

School of Information Science and Technology, Northwest University, Xi'an, 710127, China.

Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.

出版信息

Comput Biol Med. 2022 Jul;146:105522. doi: 10.1016/j.compbiomed.2022.105522. Epub 2022 Apr 26.

Abstract

Accurate measurement of brain structures is essential for the evaluation of neonatal brain growth and development. The conventional methods use manual segmentation to measure brain tissues, which is very time-consuming and inefficient. Recent deep learning achieves excellent performance in computer vision, but it is still unsatisfactory for segmenting magnetic resonance images of neonatal brains because they are immature with unique attributes. In this paper, we propose a novel attention-modulated multi-branch convolutional neural network for neonatal brain tissue segmentation. The proposed network is built on the encoder-decoder framework by introducing both multi-scale convolutions in the encoding path and multi-branch attention modules in the decoding path. Multi-scale convolutions with different kernels are used to extract rich semantic features across large receptive fields in the encoding path. Multi-branch attention modules are used to capture abundant contextual information in the decoding path for segmenting brain tissues by fusing both local features and their corresponding global dependencies. Spatial attention connections between the encoding and decoding paths are designed to increase feature propagation for both avoiding information loss during downsampling and accelerating model training convergence. The proposed network was implemented in comparison with baseline methods on three neonatal brain datasets. Our network achieves the average Dice similarity coefficients/the average Hausdorff distances of 0.9116/8.1289, 0.9367/9.8212 and 0.8931/8.1612 on the customized dCBP2021 dataset, 0.8786/11.7863, 0.8965/13.4296 and 0.8539/10.462 on the public NBAtlas dataset, as well as 0.9253/7.7968, 0.9448/9.5472 and 0.9132/7.5877 on the public dHCP2017 dataset in partitioning the brain into gray matter, white matter and cerebrospinal fluid, respectively. The experimental results show that the proposed method achieves competitive state-of-the-art performance in neonatal brain tissue segmentation. The code and pre-trained models are available at https://github.com/zhangyongqin/AMCNN.

摘要

准确测量脑结构对于评估新生儿脑生长和发育至关重要。传统方法使用手动分割来测量脑组织,这非常耗时且效率低下。最近的深度学习在计算机视觉方面取得了优异的性能,但对于分割新生儿脑的磁共振图像仍然不够理想,因为它们不成熟,具有独特的属性。在本文中,我们提出了一种新颖的注意调制多分支卷积神经网络,用于新生儿脑组织分割。所提出的网络建立在编码器-解码器框架上,通过在编码路径中引入多尺度卷积,在解码路径中引入多分支注意力模块。不同内核的多尺度卷积用于在编码路径中提取跨越大感受野的丰富语义特征。多分支注意力模块用于在解码路径中捕获丰富的上下文信息,通过融合局部特征及其相应的全局依赖关系来分割脑组织。在编码和解码路径之间设计空间注意力连接,以增加特征传播,既避免在降采样过程中丢失信息,又加速模型训练收敛。在三个新生儿脑数据集上,与基线方法相比,我们的网络在定制的 dCBP2021 数据集上实现了平均 Dice 相似系数/平均 Hausdorff 距离为 0.9116/8.1289、0.9367/9.8212 和 0.8931/8.1612,在公共 NBAtlas 数据集上实现了 0.8786/11.7863、0.8965/13.4296 和 0.8539/10.462,在公共 dHCP2017 数据集上实现了 0.9253/7.7968、0.9448/9.5472 和 0.9132/7.5877,用于将大脑分为灰质、白质和脑脊液。实验结果表明,该方法在新生儿脑组织分割中达到了具有竞争力的最新水平。代码和预训练模型可在 https://github.com/zhangyongqin/AMCNN 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验