Pontificia Universidad Católica Del Ecuador, Escuela de Ciencias Químicas, Avenida 12 de Octubre y Roca, Quito, 170525, Ecuador; Escuela Politécnica Nacional, Departamento de Ingeniería Civil y Ambiental, Ladrón de Guevara E11-253, Apartado Postal: 17-01-2759, Quito, Ecuador.
Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Cerro de La Venda S/n, Pueblito de Rocha, Guanajuato, 36040, Mexico.
Environ Res. 2022 Sep;212(Pt C):113362. doi: 10.1016/j.envres.2022.113362. Epub 2022 May 4.
The electrophoretic deposition of titanium dioxide (TiO) nanoparticles (Degussa P25) onto a boron-doped diamond (BDD) substrate was carried out to produce a photoanode (TiO/BDD) to apply in the degradation and mineralization of sodium diclofenac (DCF-Na) in an aqueous medium using photoelectrocatalysis (PEC). This study was divided into three stages: i) photoanode production through electrophoretic deposition using three suspensions (1.25%, 2.5%, 5.0% w/v) of TiO nanoparticles, applying 4.8 V for 15 and 20 s; ii) characterization of the TiO/BDD photoanode using scanning electron microscopy and cyclic voltammetry response with the [Fe(CN)] redox system; iii) degradation of DCF-Na (25 mg L) through electrochemical oxidation (EO) on BDD and PEC on TiO/BDD under dark and UVC-light conditions. The degradation of DCF-Na was evaluated using high-performance liquid chromatography and UV-Vis spectroscopy, and its mineralization measured using total organic carbon and chemical oxygen demand. The results showed that after 2 h, DCF-Na degradation and mineralization reached 98.5% and 80.1%, respectively, through PEC on the TiO/BDD photoanode at 2.2 mA cm under UVC illumination, while through EO on BDD applying 4.4 mA cm, degradation and mineralization reached 85.6% and 76.1%, respectively. This difference occurred because of the optimal electrophoretic formation of a TiO film with a 9.17 μm thickness on the BDD (2.5% w/v TiO, time 15 s, 4.8 V), which improved the electrocatalysis and oxidative capacity of the TiO/BDD photoanode. Additionally, PEC showed a lower specific energy consumption (1.55 kWh m). Thus, the use of nanostructured TiO films deposited on BDD is an innovative photoanode alternative for the photoelectrocatalytic degradation of DCF-Na, which substantially improves the degradation capacity of bare BDD.
将锐钛矿型二氧化钛(TiO)纳米粒子(Degussa P25)通过电泳沉积到掺硼金刚石(BDD)基底上,制备光阳极(TiO/BDD),用于在光电催化(PEC)作用下在水介质中降解和矿化二氯芬酸钠(DCF-Na)。本研究分为三个阶段:i)通过电泳沉积使用三种 TiO 纳米粒子悬浮液(1.25%、2.5%、5.0%w/v)在 4.8 V 下施加 15 和 20 s 制备 TiO/BDD 光阳极;ii)使用扫描电子显微镜和循环伏安法响应[Fe(CN)]氧化还原体系对 TiO/BDD 光阳极进行表征;iii)在黑暗和 UVC 光照条件下通过电化学氧化(EO)在 BDD 和 PEC 在 TiO/BDD 上氧化二氯芬酸钠(25mg L)。通过高效液相色谱和紫外可见光谱评估二氯芬酸钠的降解,通过总有机碳和化学需氧量测量其矿化。结果表明,在 UVC 光照下,2.2 mA cm 时,在 TiO/BDD 光阳极上通过 PEC 处理 2 h 后,二氯芬酸钠的降解和矿化率分别达到 98.5%和 80.1%,而通过在 BDD 上施加 4.4 mA cm 的 EO,降解和矿化率分别达到 85.6%和 76.1%。这是因为在 BDD 上形成了厚度为 9.17 μm 的 TiO 薄膜,这是由于 TiO 薄膜的最佳电泳形成(2.5%w/v TiO,时间 15 s,4.8 V),这提高了 TiO/BDD 光阳极的电催化和氧化能力。此外,PEC 显示出较低的比能量消耗(1.55 kWh m)。因此,使用沉积在 BDD 上的纳米结构 TiO 薄膜作为光阳极是一种用于光电催化降解二氯芬酸钠的创新选择,它大大提高了裸 BDD 的降解能力。