Ge Shunhao, Sang Dandan, Li Changxing, Shi Yarong, Wang Qinglin, Xiao Dao
Key Laboratory of Quantum Materials Under Extreme Conditions in Shandong Province, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Nanomaterials (Basel). 2025 Jun 29;15(13):1003. doi: 10.3390/nano15131003.
Titanium dioxide (TiO) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron-hole separation. Additionally, TiO exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD's thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology.
二氧化钛(TiO₂)是一种具有广泛应用潜力的宽带隙半导体材料,以其优异的光催化性能、高化学稳定性、低成本和无毒而闻名。这些特性使其在光伏能源、环境修复和光电器件等应用中极具吸引力。例如,由于其高效的光生电子 - 空穴分离,TiO₂被广泛用作通过水分解制氢和降解有机污染物的光催化剂。此外,TiO₂在染料敏化太阳能电池和光电探测器中表现出卓越的性能,为绿色能源和光电转换技术的进步提供了关键支持。硼掺杂金刚石(BDD)以其出色的导电性、高硬度、宽电化学窗口和优异的化学惰性而闻名。这些独特的特性使其在电化学分析、电催化、传感器和生物医学等领域得到广泛应用。例如,BDD电极在检测痕量化学物质和污染物时表现出高灵敏度和稳定性,同时在电催化水分解和工业废水处理中也表现出优异的性能。其化学稳定性和生物相容性使其成为生物传感器和可植入设备的理想材料。研究表明将TiO₂纳米结构与BDD组合成异质结构可以展现出意想不到的光学和电学性能以及传输行为,为光致发光和整流二极管器件开辟了新的可能性。然而,基于这种异质结构的应用仍然面临挑战,特别是在高温条件下的光电探测器、光电发射器、光调制器和光纤器件方面。本文探讨了它们的组合异质结构在光电器件领域如光电探测器、发光二极管(LED)、存储器、场效应晶体管(FET)和传感方面的潜力和前景。TiO₂/BDD异质结可以提高光响应度并扩展光谱检测范围,由于BDD的热导率,使其在高温和恶劣环境中具有稳定性。本文提出了未来的研究方向和前景,以促进TiO₂纳米结构材料和基于BDD的异质结构的发展,为提高光响应度和扩展光谱检测范围奠定基础,从而在高温和高频光电器件领域实现稳定性。基于TiO₂ - BDD异质结构的光电器件的进一步研究和探索具有重要意义,为光电子技术的未来发展提供新的突破和创新。