Suppr超能文献

在科恩-沈框架下热辅助占据密度泛函理论的重新表述。

Reformulation of thermally assisted-occupation density functional theory in the Kohn-Sham framework.

作者信息

Yeh Shu-Hao, Yang Weitao, Hsu Chao-Ping

机构信息

Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.

Department of Chemistry, Duke University, Durham, North Carolina 27710, USA.

出版信息

J Chem Phys. 2022 May 7;156(17):174108. doi: 10.1063/5.0087012.

Abstract

We reformulate the thermally assisted-occupation density functional theory (TAO-DFT) into the Kohn-Sham single-determinant framework and construct two new post-self-consistent field (post-SCF) static correlation correction schemes, named rTAO and rTAO-1. In contrast to the original TAO-DFT with the density in an ensemble form, in which each orbital density is weighted with a fractional occupation number, the ground-state density is given by a single-determinant wavefunction, a regular Kohn-Sham (KS) density, and total ground state energy is expressed in the normal KS form with a static correlation energy formulated in terms of the KS orbitals. In post-SCF calculations with rTAO functionals, an efficient energy scanning to quantitatively determine θ is also proposed. The rTAOs provide a promising method to simulate systems with strong static correlation as original TAO, but simpler and more efficient. We show that both rTAO and rTAO-1 is capable of reproducing most results from TAO-DFT without the additional functional E used in TAO-DFT. Furthermore, our numerical results support that, without the functional E, both rTAO and rTAO-1 can capture correct static correlation profiles in various systems.

摘要

我们将热辅助占据密度泛函理论(TAO-DFT)重新表述为Kohn-Sham单行列式框架,并构建了两种新的自洽后(post-SCF)静态关联校正方案,分别称为rTAO和rTAO-1。与原始的以系综形式的密度的TAO-DFT不同,在原始TAO-DFT中每个轨道密度都用一个分数占据数加权,而基态密度由单行列式波函数给出,即常规的Kohn-Sham(KS)密度,并且总基态能量以正常的KS形式表示,其中静态关联能量根据KS轨道来表述。在使用rTAO泛函的自洽后计算中,还提出了一种有效的能量扫描来定量确定θ。rTAO提供了一种像原始TAO一样模拟具有强静态关联系统的有前景的方法,但更简单且更高效。我们表明rTAO和rTAO-1都能够在不使用TAO-DFT中额外泛函E的情况下重现TAO-DFT的大多数结果。此外,我们的数值结果支持,在没有泛函E的情况下,rTAO和rTAO-1都能在各种系统中捕捉到正确的静态关联分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验