Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA.
J Chem Phys. 2017 Jun 7;146(21):214109. doi: 10.1063/1.4982951.
We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.
我们分析了通过将整数系统的 Kohn-Sham(KS)和广义 Kohn-Sham(GKS)非相互作用 v 可表示密度域的约束搜索空间扩展到四个不同的分数系统密度集,来为分数电子制定 Kohn-Sham(KS)密度泛函的四种方法。特别是,这些密度集是 (I) 集合相互作用 N 可表示密度,(II) 集合非相互作用 N 可表示密度,(III) 通过 Janak 构造的非相互作用密度,以及 (IV) 组成轨道满足 Aufbau 占据原理的非相互作用密度。通过证明与这些密度相关的基础一阶约化密度矩阵的等价性,我们表明集 (I)、(II) 和 (III) 是等价的,并且全部简化为 Janak 构造。此外,对于在极小值处具有集合 v 可表示假设的泛函,(III) 简化为 (IV),从而证明了在研究零温度下巨正则系综中定义的分数电子系统基态时,在 (G)KS 框架内使用 Aufbau 协议的合理性。通过进一步分析 (G)KS 方案中不同密度泛函近似 (DFA) 的 Aufbau 解,我们严格证明了 Hartree-Fock 泛函只能有一个分数占据,而在存在简并的情况下,一般 DFA 可以有多个分数占据。这已通过使用局域密度近似作为一般 DFA 的代表的数值计算得到证实。这项工作因此澄清了分数电子系统密度泛函理论计算的重要问题。