Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
Cardiology Department, AZ Sint-Jan, Bruges, Belgium.
Med Biol Eng Comput. 2022 Jul;60(7):1929-1945. doi: 10.1007/s11517-022-02550-y. Epub 2022 May 7.
In this work, we present the release of a novel easy to use software package called DGM or Directed-Graph-Mapping. DGM can automatically analyze any type of arrhythmia to find reentry or focal sources if the measurements are synchronized in time. Currently, DGM requires the local activation times (LAT) and the spatial coordinates of the measured electrodes. However, there is no requirement for any spatial organization of the electrodes, allowing to analyze clinical, experimental or computational data. DGM creates directed networks of the activation, which are analyzed with fast algorithms to search for reentry (cycles in the network) and focal sources (nodes with outgoing arrows). DGM has been mainly optimized to analyze atrial tachycardia, but we also discuss other applications of DGM demonstrating its wide applicability. The goal is to release a free software package which can allow researchers to save time in the analysis of cardiac data. An academic license is attached to the software, allowing only non-commercial use of the software. All updates of the software, user and installation guide will be published on a dedicated website www.dgmapping.com . Graphical Abstract Direct-Graph-Mapping is a method to automatically analyze a given arrhythmia by converting measured data of the electrodes in a directed network. DGM requires the local activation times (LAT) and the spatial coordinates of the measured electrodes. There is no requirement for any spatial organization of the electrodes, allowing to analyze clinical, experimental or computational data (see left). An example could be the LATs and coordinates from a CARTO file. DGM creates a directed network of the activation by (1) determining the neighbors of each node, 2 (2) allowing a directed arrow between two neighbors if propagation of the electrical wave is possible, (3) repeating this process for all nodes, (4) if necessary, redistributing the nodes more uniformly and repeating step (1)-(3). Two possible steps are (5) to visualize the wavefront by creating an average graph or (6) find the cycles in the network which represent the reentry loops. Focal sources are nodes with only outgoing arrows.
在这项工作中,我们发布了一个名为 DGM(有向图映射)的新型易用软件包。DGM 可以自动分析任何类型的心律失常,如果测量结果时间同步,就可以找到折返或焦点源。目前,DGM 需要局部激活时间(LAT)和测量电极的空间坐标。但是,不需要对电极进行任何空间组织,允许分析临床、实验或计算数据。DGM 创建激活的有向网络,并用快速算法分析这些网络,以寻找折返(网络中的循环)和焦点源(有出射箭头的节点)。DGM 主要优化用于分析心房性心动过速,但我们也讨论了 DGM 的其他应用,展示了其广泛的适用性。目标是发布一个免费的软件包,允许研究人员在分析心脏数据时节省时间。软件附有学术许可证,只允许软件非商业使用。软件的所有更新、用户和安装指南将发布在一个专门的网站 www.dgmapping.com 上。 图形摘要 有向图映射是一种通过将电极的测量数据转换为有向网络来自动分析给定心律失常的方法。DGM 需要局部激活时间(LAT)和测量电极的空间坐标。不需要对电极进行任何空间组织,允许分析临床、实验或计算数据(见左图)。例如,可以是 CARTO 文件中的 LAT 和坐标。DGM 通过以下步骤创建激活的有向网络:(1)确定每个节点的邻居,(2)如果电脉冲的传播是可能的,允许两个邻居之间有一个有向箭头,(3)对所有节点重复此过程,(4)如果需要,更均匀地重新分配节点,并重复步骤(1)-(3)。可能的两个步骤是(5)通过创建平均图来可视化波前,或(6)找到网络中的循环,这些循环代表折返环。焦点源是只有出射箭头的节点。