文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺氧间充质干细胞衍生的细胞外囊泡通过恢复 CPT1A 介导的脂肪酸氧化改善缺血再灌注损伤后的肾纤维化。

Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation.

机构信息

Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.

Department of Nephropathy, The Second Hospital of Jilin University, Changchun, China.

出版信息

Stem Cell Res Ther. 2022 May 7;13(1):191. doi: 10.1186/s13287-022-02861-9.


DOI:10.1186/s13287-022-02861-9
PMID:35526054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9080148/
Abstract

BACKGROUND: Renal fibrosis is a common pathological process of chronic kidney diseases induced by multiple factors. Hypoxic pretreatment of mesenchymal stem cells can enhance the efficacy of secreted extracellular vesicles (MSC-EVs) on various diseases, but it is not clear whether they can better improve renal fibrosis. The latest research showed that recovery of fatty acid oxidation (FAO) can reduce renal fibrosis. In this study, we aimed to examine whether hypoxic pretreatment with MSC extracellular vesicles (Hypo-EVs) can improve FAO to restore renal fibrosis and to investigate the underlying mechanism. METHODS: Hypo-EVs were isolated from hypoxia-pretreated human placenta-derived MSC (hP-MSC), and Norm-EVs were isolated from hP-MSC cultured under normal conditions. We used ischemia-reperfusion (I/R)-induced renal fibrosis model in vivo. The mice were injected with PBS, Hypo-EVs, or Norm-EVs immediately after the surgery and day 1 postsurgery. Renal function, kidney pathology, and renal fibrosis were assessed for kidney damage evaluation. For mechanistic exploration, fatty acid oxidation (FAO), mitochondrial morphological alterations, ATP production and mitochondrial mass proteins were detected in vivo. Mitochondrial membrane potential and reactive oxygen species (ROS) production were investigated in vitro. RESULTS: We found that Hypo-EVs confer a superior therapeutic effect on recovery of renal structure damage, restoration of renal function and reduction in renal fibrosis. Meanwhile, Hypo-EVs enhanced mitochondrial FAO in kidney by restoring the expression of a FAO key rate-limiting enzyme carnitine palmitoyl-transferase 1A (CPT1A). Mechanistically, the improvement of mitochondrial homeostasis, characterized by repaired mitochondrial structure, restoration of mitochondrial mass and ATP production, inhibition of oxidative stress, and increased mitochondrial membrane potential, partially explains the effect of Hypo-EVs on improving mitochondrial FAO and thus attenuating I/R damage. CONCLUSIONS: Hypo-EVs suppress the renal fibrosis by restoring CPT1A-mediated mitochondrial FAO, which effects may be achieved through regulation of mitochondrial homeostasis. Our findings provide further mechanism support for development cell-free therapy of renal fibrosis.

摘要

背景:肾纤维化是多种因素诱导的慢性肾脏病的一种常见病理过程。间充质干细胞的低氧预处理可以增强分泌的细胞外囊泡(MSC-EVs)对各种疾病的疗效,但尚不清楚它是否能更好地改善肾纤维化。最新研究表明,脂肪酸氧化(FAO)的恢复可以减少肾纤维化。在本研究中,我们旨在研究低氧预处理的间充质干细胞细胞外囊泡(Hypo-EVs)是否可以改善 FAO 以恢复肾纤维化,并探讨其潜在机制。

方法:从缺氧预处理的人胎盘来源间充质干细胞(hP-MSC)中分离 Hypo-EVs,从在正常条件下培养的 hP-MSC 中分离 Norm-EVs。我们在体内使用缺血再灌注(I/R)诱导的肾纤维化模型。手术后和术后第 1 天,立即向小鼠注射 PBS、Hypo-EVs 或 Norm-EVs。评估肾脏功能、肾脏病理和肾纤维化,以评估肾脏损伤。为了进行机制探索,在体内检测了脂肪酸氧化(FAO)、线粒体形态改变、ATP 产生和线粒体质量蛋白。在体外研究了线粒体膜电位和活性氧(ROS)的产生。

结果:我们发现 Hypo-EVs 对恢复肾脏结构损伤、恢复肾功能和减少肾纤维化具有更好的治疗效果。同时,Hypo-EVs 通过恢复脂肪酸氧化的关键限速酶肉碱棕榈酰转移酶 1A(CPT1A)的表达,增强了肾脏中的线粒体 FAO。从机制上讲,线粒体稳态的改善,表现为修复的线粒体结构、线粒体质量和 ATP 产生的恢复、氧化应激的抑制以及线粒体膜电位的增加,部分解释了 Hypo-EVs 改善线粒体 FAO 从而减轻 I/R 损伤的作用。

结论:Hypo-EVs 通过恢复 CPT1A 介导的线粒体 FAO 抑制肾纤维化,其作用可能是通过调节线粒体稳态来实现的。我们的研究结果为开发无细胞肾纤维化治疗提供了进一步的机制支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/ac9c06286d86/13287_2022_2861_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/567a2aa20dcc/13287_2022_2861_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/b7583ae98a1c/13287_2022_2861_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/5e13860d17b8/13287_2022_2861_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/e3896b4f3567/13287_2022_2861_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/0ef731bc8cae/13287_2022_2861_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/49ec68eb55b8/13287_2022_2861_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/ac9c06286d86/13287_2022_2861_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/567a2aa20dcc/13287_2022_2861_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/b7583ae98a1c/13287_2022_2861_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/5e13860d17b8/13287_2022_2861_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/e3896b4f3567/13287_2022_2861_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/0ef731bc8cae/13287_2022_2861_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/49ec68eb55b8/13287_2022_2861_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/9080148/ac9c06286d86/13287_2022_2861_Fig7_HTML.jpg

相似文献

[1]
Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation.

Stem Cell Res Ther. 2022-5-7

[2]
Tracking of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improving Mitochondrial Function in Renal Ischemia-Reperfusion Injury.

ACS Nano. 2020-4-28

[3]
Oct-4 Enhanced the Therapeutic Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Acute Kidney Injury.

Kidney Blood Press Res. 2020-1-10

[4]
Protective effect of small extracellular vesicles (EVs) derived from ACE2-modified human umbilical cord mesenchymal stem cells against renal ischemia-reperfusion injury.

Nephrology (Carlton). 2024-1

[5]
Protective effect of miRNA-containing extracellular vesicles derived from mesenchymal stromal cells of old rats on renal function in chronic kidney disease.

Stem Cell Res Ther. 2020-7-8

[6]
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production.

Int J Mol Sci. 2022-3-8

[7]
Proteomics profile of mesenchymal stromal cells and extracellular vesicles in normoxic and hypoxic conditions.

Cytotherapy. 2022-12

[8]
Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia: Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury.

Cell Physiol Biochem. 2019

[9]
Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis.

J Clin Invest. 2021-3-1

[10]
Mesenchymal stromal cells secretome restores bioenergetic and redox homeostasis in human proximal tubule cells after ischemic injury.

Stem Cell Res Ther. 2023-12-10

引用本文的文献

[1]
Roles of Mitochondrial Fusion and Division in Harmine Derivative H-2-168-Induced Neurotoxicity.

J Immunol Res. 2025-6-2

[2]
Extracellular Vesicles in Acute Kidney Injury: Mechanisms, Biomarkers, and Therapeutic Potential.

Int J Nanomedicine. 2025-5-17

[3]
Nitric oxide-primed engineered extracellular vesicles restore bioenergetics in acute kidney injury via mitochondrial transfer.

Theranostics. 2025-4-13

[4]
Enhanced reno-protective effects of CHIR99021 modified mesenchymal stem cells against rat acute kidney injury model.

Bioimpacts. 2024-11-4

[5]
Research dynamics and drug treatment of renal fibrosis from a mitochondrial perspective: a historical text data analysis based on bibliometrics.

Naunyn Schmiedebergs Arch Pharmacol. 2025-4-14

[6]
Functionalized extracellular vesicles of mesenchymal stem cells for regenerative medicine.

J Nanobiotechnology. 2025-3-18

[7]
Adipose stem cells regulate lipid metabolism by upregulating mitochondrial fatty acid β-oxidation in macrophages to improve the retention rate of transplanted fat.

Stem Cell Res Ther. 2024-9-27

[8]
Comparative study of systemic and local delivery of mesenchymal stromal cells for the treatment of chronic kidney disease.

Front Cell Dev Biol. 2024-8-21

[9]
KCNJ16-depleted kidney organoids recapitulate tubulopathy and lipid recovery upon statins treatment.

Stem Cell Res Ther. 2024-8-26

[10]
Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction.

J Nanobiotechnology. 2024-8-14

本文引用的文献

[1]
Hypoxia-Conditioned Mesenchymal Stem Cells in Tissue Regeneration Application.

Tissue Eng Part B Rev. 2022-10

[2]
Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis.

Biomed Pharmacother. 2021-11

[3]
Astragaloside IV ameliorates fat metabolism in the liver of ageing mice through targeting mitochondrial activity.

J Cell Mol Med. 2021-9

[4]
Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI.

Cell Death Dis. 2021-7-30

[5]
Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways.

J Nanobiotechnology. 2021-7-7

[6]
Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury.

Int J Mol Sci. 2021-6-20

[7]
Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet?

Hypertension. 2021-8

[8]
Chronic kidney disease.

Lancet. 2021-8-28

[9]
Druggability of lipid metabolism modulation against renal fibrosis.

Acta Pharmacol Sin. 2022-3

[10]
Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases.

Stem Cell Res Ther. 2021-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索