Wan Yanhua, Wang Changyao, Zhang Xingmiao, Yin Yang, Liu Mengmeng, Ma Bing, Duan Linlin, Ma Yuzhu, Zhang Wei, Zheng Changlin, Chao Dongliang, Wang Fei, Xia Yongyao, Li Wei
Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials Science, Fudan University, Shanghai 200433, China.
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
Natl Sci Rev. 2024 Feb 6;11(4):nwae054. doi: 10.1093/nsr/nwae054. eCollection 2024 Apr.
Due to their uncontrollable assembly and crystallization process, the synthesis of mesoporous metal oxide single crystals remains a formidable challenge. Herein, we report the synthesis of single-crystal-like mesoporous LiTiSiO by using soft micelles as templates. The key lies in the atomic-scale self-assembly and step-crystallization processes, which ensure the formation of single-crystal-like mesoporous LiTiSiO microparticles via an oriented attachment growth mechanism under the confinement of an formed carbon matrix. The mesoporous LiTiSiO anode achieves a superior rate capability (148 mAh g at 5.0 A g) and outstanding long-term cycling stability (138 mAh g after 3000 cycles at 2.0 A g) for lithium storage as a result of the ultrafast Li diffusion caused by penetrating mesochannels and nanosized crystal frameworks (5-10 nm). In comparison, bulk LiTiSiO exhibits poor rate capability and cycle performance due to micron-scale diffusion lengths. This method is very simple and reproducible, heralding a new way of designing and synthesizing mesoporous single crystals with controllable frameworks and chemical functionalities.
由于其不可控的组装和结晶过程,介孔金属氧化物单晶的合成仍然是一个巨大的挑战。在此,我们报道了以软胶束为模板合成类单晶介孔LiTiSiO。关键在于原子尺度的自组装和分步结晶过程,这确保了在形成的碳基质的限制下,通过定向附着生长机制形成类单晶介孔LiTiSiO微粒。由于穿透介孔通道和纳米尺寸晶体骨架(5 - 10纳米)导致的超快锂离子扩散,介孔LiTiSiO阳极在锂存储方面实现了优异的倍率性能(在5.0 A g下为148 mAh g)和出色的长期循环稳定性(在2.0 A g下循环3000次后为138 mAh g)。相比之下,块状LiTiSiO由于微米级的扩散长度而表现出较差的倍率性能和循环性能。这种方法非常简单且可重复,为设计和合成具有可控骨架和化学功能的介孔单晶开辟了一条新途径。