Suppr超能文献

[利用定量合成磁共振成像对乳腺良恶性病变进行鉴别诊断]

[Differential diagnosis of benign and malignant breast lesions using quantitative synthetic magnetic resonance imaging].

作者信息

Zhang Liying, Zhao Xin, Yin Xing

机构信息

Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2022 Apr 20;42(4):457-462. doi: 10.12122/j.issn.1673-4254.2022.04.01.

Abstract

OBJECTIVE

To investigate the value of quantitative synthetic magnetic resonance imaging (SyMRI) in distinguishing between benign and malignant breast lesions.

METHODS

We retrospectively collected data of preoperative conventional MRI and multi-dynamic multi-echo sequences from 95 patients with breast lesions showing mass-type enhancement on DCE-MRI, including 27 patients with benign lesions and 68 with malignant lesions. The MRI features of the lesions (shape, margin, internal enhancement pattern, time-signal intensity curve, and T2WI signal) were analyzed, and for each lesion, SyMRI-generated quantitative parameters including T1 and T2 relaxation time and proton density (PD) were measured before and after enhancement and recorded as T1p, T2p, PDp and T1e, T2e, and PDe, respectively. The relative change rate of each parameter was calculated. Logistic regression and all-subset regression analyses were performed for variable selection to construct diagnostic models of the breast lesions, and receiver-operating characteristic (ROC) analysis was used to assess the performance of each model for differentiation of benign and malignant lesions.

RESULTS

There were significant differences in the MRI features between benign and malignant lesions ( < 0.05). All the SyMRI-generated quantitative parameters, with the exception of T2e and Pdp, showed significant differences between benign and malignant lesions ( < 0.05). Among the constructed diagnostic models, the model based on all the DCE-MRI features combined with SyMRI parameters T2p and T1e (DCE-MRI+T2p+T1e) showed the best performance in the differential diagnosis malignant breast masses with an AUC of 0.995 (95% : 0.983-1.000).

CONCLUSION

Quantitative SyMRI can be used for differential diagnosis of benign and malignant breast lesions.

摘要

目的

探讨定量合成磁共振成像(SyMRI)在鉴别乳腺良恶性病变中的价值。

方法

回顾性收集95例乳腺病变患者术前常规MRI及多动态多回波序列数据,这些病变在DCE-MRI上表现为肿块样强化,其中良性病变27例,恶性病变68例。分析病变的MRI特征(形态、边缘、内部强化方式、时间-信号强度曲线及T2WI信号),并测量每个病变在增强前后SyMRI生成的定量参数,包括T1和T2弛豫时间及质子密度(PD),分别记录为T1p、T2p、PDp和T1e、T2e、PDe。计算各参数的相对变化率。进行逻辑回归和全子集回归分析以选择变量,构建乳腺病变诊断模型,并采用受试者操作特征(ROC)分析评估各模型鉴别良恶性病变的性能。

结果

良性和恶性病变的MRI特征存在显著差异(<0.05)。除T2e和Pdp外,所有SyMRI生成的定量参数在良性和恶性病变之间均显示出显著差异(<0.05)。在构建的诊断模型中,基于所有DCE-MRI特征联合SyMRI参数T2p和T1e(DCE-MRI+T2p+T1e)的模型在鉴别乳腺恶性肿块方面表现最佳,AUC为0.995(95%:0.983-1.000)。

结论

定量SyMRI可用于乳腺良恶性病变的鉴别诊断。

相似文献

本文引用的文献

2
Investigating the Image Quality and Utility of Synthetic MRI in the Breast.研究合成 MRI 在乳腺中的图像质量和实用性。
Magn Reson Med Sci. 2021 Dec 1;20(4):431-438. doi: 10.2463/mrms.mp.2020-0132. Epub 2021 Feb 2.
8
T1 mapping in the assessment of endomyocardial fibrosis.T1映射在心肌内膜纤维化评估中的应用
Int J Cardiovasc Imaging. 2021 Jan;37(1):267-268. doi: 10.1007/s10554-020-01955-w. Epub 2020 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验