Suppr超能文献

发现新型罗司特-4-烯衍生物作为预防植物病原性细菌感染的潜在植物激活剂:设计、合成与生物学研究。

Discovery of novel rost-4-ene derivatives as potential plant activators for preventing phytopathogenic bacterial infection: Design, synthesis and biological studies.

机构信息

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.

出版信息

Pest Manag Sci. 2022 Aug;78(8):3404-3415. doi: 10.1002/ps.6981. Epub 2022 May 27.

Abstract

BACKGROUND

Gradually aggravated disease caused by phytopathogenic bacteria severely restricts food security and crop yield, and few pesticides can relieve this severe situation. Thus, development and excavation of new agrochemicals with high bioactivity and novel action mechanism may be a feasible strategy to control intractable bacterial diseases. As a privileged molecular framework, steroid molecules exhibit diversiform bioactivities. Herein, a series of novel androst-4-ene derivatives were designed, synthesised and investigated for their antibacterial behaviour to excavate novel agrochemicals on the base of steroid molecules.

RESULTS

Bioassay results indicated that target compounds displayed high bioactivities toward three destructive phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa). Compound III displayed excellent in vitro antibacterial profiling (EC  = 2.37 mg L towards Xoo, EC  = 2.10 mg L towards Xac, EC  = 9.50 mg L towards Psa). Furthermore, compound III showed outstanding in vivo protective activities, with values of 81.81% and 58.75% towards kiwifruit bacterial canker and rice bacterial leaf blight, respectively. Analysis of the antibacterial mechanism disclosed that compound III enhanced host defence enzyme activities superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and catalase (CAT) and increased the salicylate synthase content to induce host resistance. In addition, compound III increased the membrane permeability, destroyed the cell membrane and killed the bacteria.

CONCLUSION

Given these profiles of target compounds, we highlight a new strategy for controlling intractable plant bacterial diseases by inducing plant resistance and targeting the bacterial cell membrane. © 2022 Society of Chemical Industry.

摘要

背景

植物病原菌引起的病害逐渐加重,严重威胁粮食安全和作物产量,而目前可用的农药很少能缓解这种严重局面。因此,开发和挖掘具有高生物活性和新颖作用机制的新型农药可能是控制难治性细菌性疾病的可行策略。甾体作为一种特权分子骨架,表现出多样的生物活性。在此,我们设计、合成了一系列新型雄甾-4-烯衍生物,并基于甾体分子对其抗菌行为进行了研究,以期挖掘新型农用化学品。

结果

生物测定结果表明,目标化合物对三种破坏性植物病原菌(包括稻白叶枯病菌(Xoo)、柑橘溃疡病菌(Xac)和梨火疫病菌(Psa))表现出很高的生物活性。化合物 III 表现出优异的体外抗菌特性(对 Xoo 的 EC 50 为 2.37 mg/L,对 Xac 的 EC 50 为 2.10 mg/L,对 Psa 的 EC 50 为 9.50 mg/L)。此外,化合物 III 对猕猴桃细菌性溃疡病和水稻细菌性条斑病具有优异的体内保护活性,保护率分别为 81.81%和 58.75%。抗菌机制分析表明,化合物 III 通过增强超氧化物歧化酶(SOD)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)和过氧化氢酶(CAT)等宿主防御酶的活性,以及提高水杨酸合酶的含量来诱导宿主抗性。此外,化合物 III 还增加了细胞膜的通透性,破坏了细胞膜并杀死了细菌。

结论

鉴于这些目标化合物的特性,我们提出了一种通过诱导植物抗性和靶向细菌细胞膜来控制难治性植物细菌性疾病的新策略。 © 2022 英国化学学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验