Abdulle Assyr, Pavliotis Grigorios A, Zanoni Andrea
ANMC, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Department of Mathematics, Imperial College London, London, SW7 2AZ UK.
Stat Comput. 2022;32(2):34. doi: 10.1007/s11222-022-10081-7. Epub 2022 Apr 11.
We propose a novel method for drift estimation of multiscale diffusion processes when a sequence of discrete observations is given. For the Langevin dynamics in a two-scale potential, our approach relies on the eigenvalues and the eigenfunctions of the homogenized dynamics. Our first estimator is derived from a martingale estimating function of the generator of the homogenized diffusion process. However, the unbiasedness of the estimator depends on the rate with which the observations are sampled. We therefore introduce a second estimator which relies also on filtering the data, and we prove that it is asymptotically unbiased independently of the sampling rate. A series of numerical experiments illustrate the reliability and efficiency of our different estimators.
当给定离散观测序列时,我们提出了一种用于多尺度扩散过程漂移估计的新方法。对于双尺度势中的朗之万动力学,我们的方法依赖于均匀化动力学的特征值和特征函数。我们的第一个估计器是从均匀化扩散过程生成器的鞅估计函数推导出来的。然而,估计器的无偏性取决于观测采样的速率。因此,我们引入了第二个也依赖于数据滤波的估计器,并证明它与采样速率无关是渐近无偏的。一系列数值实验说明了我们不同估计器的可靠性和效率。