Suppr超能文献

用于离散观测多尺度扩散漂移估计的特征函数鞅估计函数和滤波数据。

Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale diffusions.

作者信息

Abdulle Assyr, Pavliotis Grigorios A, Zanoni Andrea

机构信息

ANMC, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

Department of Mathematics, Imperial College London, London, SW7 2AZ UK.

出版信息

Stat Comput. 2022;32(2):34. doi: 10.1007/s11222-022-10081-7. Epub 2022 Apr 11.

Abstract

We propose a novel method for drift estimation of multiscale diffusion processes when a sequence of discrete observations is given. For the Langevin dynamics in a two-scale potential, our approach relies on the eigenvalues and the eigenfunctions of the homogenized dynamics. Our first estimator is derived from a martingale estimating function of the generator of the homogenized diffusion process. However, the unbiasedness of the estimator depends on the rate with which the observations are sampled. We therefore introduce a second estimator which relies also on filtering the data, and we prove that it is asymptotically unbiased independently of the sampling rate. A series of numerical experiments illustrate the reliability and efficiency of our different estimators.

摘要

当给定离散观测序列时,我们提出了一种用于多尺度扩散过程漂移估计的新方法。对于双尺度势中的朗之万动力学,我们的方法依赖于均匀化动力学的特征值和特征函数。我们的第一个估计器是从均匀化扩散过程生成器的鞅估计函数推导出来的。然而,估计器的无偏性取决于观测采样的速率。因此,我们引入了第二个也依赖于数据滤波的估计器,并证明它与采样速率无关是渐近无偏的。一系列数值实验说明了我们不同估计器的可靠性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb39/9001250/bc30cb4f9ca1/11222_2022_10081_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验