College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China.
Comput Intell Neurosci. 2022 Apr 28;2022:1010767. doi: 10.1155/2022/1010767. eCollection 2022.
You only look once (YOLO) is one of the most efficient target detection networks. However, the performance of the YOLO network decreases significantly when the variation between the training data and the real data is large. To automatically customize the YOLO network, we suggest a novel transfer learning algorithm with the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter and Gaussian mixture probability hypothesis density (GM-PHD) filter. The proposed framework can automatically customize the YOLO framework with unlabelled target sequences. The frames of the unlabelled target sequences are automatically labelled. The detection probability and clutter density of the SMC-PHD filter and GM-PHD are applied to retrain the YOLO network for occluded targets and clutter. A novel likelihood density with the confidence probability of the YOLO detector and visual context indications is implemented to choose target samples. A simple resampling strategy is proposed for SMC-PHD YOLO to address the weight degeneracy problem. Experiments with different datasets indicate that the proposed framework achieves positive outcomes relative to state-of-the-art frameworks.
你只需看一次 (YOLO) 是最有效的目标检测网络之一。然而,当训练数据与真实数据之间的差异较大时,YOLO 网络的性能会显著下降。为了自动定制 YOLO 网络,我们建议使用一种新颖的迁移学习算法,该算法结合了序贯蒙特卡罗概率假设密度 (SMC-PHD) 滤波器和高斯混合概率假设密度 (GM-PHD) 滤波器。所提出的框架可以使用未标记的目标序列自动定制 YOLO 框架。未标记的目标序列的帧被自动标记。SMC-PHD 滤波器和 GM-PHD 的检测概率和杂波密度被应用于重新训练 YOLO 网络以解决遮挡目标和杂波问题。实现了一种新的似然密度,其中包含 YOLO 探测器的置信概率和视觉上下文指示,用于选择目标样本。提出了一种简单的重采样策略,用于解决 SMC-PHD YOLO 的权重退化问题。在不同数据集上的实验表明,与最先进的框架相比,所提出的框架取得了积极的成果。