Suppr超能文献

具有氢键网络的木质纤维素糠基生物基聚二乙炔的晶体结构:通过改变间隔长度影响固态聚合方向

Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length.

作者信息

Baillargeon Pierre, Robidas Raphaël, Toulgoat Olivier, Michaud Zacharie, Legault Claude Y, Rahem Tarik

机构信息

Département de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada.

Département de chimie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.

出版信息

Cryst Growth Des. 2022 May 4;22(5):2812-2823. doi: 10.1021/acs.cgd.2c00307. Epub 2022 Apr 12.

Abstract

We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene ( = 1) or 3 methylene units ( = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for = 1 and to independent linear PDA chains with intramolecular HBs for = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).

摘要

我们展示了两种木质纤维素基生物基二乙炔(DAs)的拓扑化学聚合,这两种二乙炔仅在二炔和氨基甲酸酯官能团之间的亚烷基间隔长度上有所不同,间隔长度分别为1个亚甲基(=1)或3个亚甲基单元(=3)。它们的晶体分子结构具有独特的特征,适合在两个潜在方向上进行聚合,要么与氢键(HB)网络平行,要么与氢键网络倾斜。然而,最终聚二乙炔(PDAs)的单晶结构表明,这两种衍生物共轭主链的最终取向不同,对于=1的情况,会形成HB超分子聚合物网络(二维纳米片),而对于=3的情况,则会形成具有分子内HB的独立线性PDA链。因此,间隔长度修饰可被视为一种影响共轭聚合物链分子取向的新策略,这对于开发具有最佳机械和光电性能的下一代材料至关重要。对模型低聚二乙炔进行了计算,以评估不同晶体超分子堆积模式中HB的协同效应以及与PDA链共轭主链扭转相关的能量分布(即其采用平面或螺旋构象的能力)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b46/9073937/9429075dbbc5/cg2c00307_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验