Suppr超能文献

设计具有用于有机太阳能电池的有前景的光伏参数的基于二噻吩并萘的受体材料。

Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells.

作者信息

Ans Muhammad, Iqbal Javed, Bhatti Ijaz Ahmad, Ayub Khurshid

机构信息

Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan

Punjab Bio-energy Institute, University of Agriculture Faisalabad 38040 Pakistan

出版信息

RSC Adv. 2019 Oct 28;9(59):34496-34505. doi: 10.1039/c9ra06345e. eCollection 2019 Oct 23.

Abstract

Scientists are focusing on non-fullerene based acceptors due to their efficient photovoltaic properties. Here, we have designed four novel dithienonaphthalene based acceptors with better photovoltaic properties through structural modification of a well-known experimentally synthesized reference compound R. The newly designed molecules have a dithienonaphthalene core attached with different acceptors (end-capped). The acceptor moieties are 2-(5,6-difluoro-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (H1), 2-(5,6-dicyano-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)-malononitrile (H2), 2-(5-methylene-6-oxo-5,6-dihydrocylopenta[]thiophe-4-ylidene)-malononitrile (H3) and 2-(3-(dicyanomethylene)-2,3-dihydroinden-1-yliden)malononitrile (H4). The photovoltaic parameters of the designed molecules are discussed in comparison with those of the reference R. All newly designed molecules show a reduced HOMO-LUMO energy gap (2.17 eV to 2.28 eV), compared to the reference R (2.31 eV). Charger transfer from donor to acceptor is confirmed by a frontier molecular orbital (FMO) diagram. All studied molecules show extensive absorption in the visible region and absorption maxima are red-shifted compared to R. All investigated molecules have lower excitation energies which reveal high charge transfer rates, as compared to R. To evaluate the open circuit voltage, the designed acceptor molecules are blended with a well-known donor PBDB-T. The molecule H3 has the highest value (1.88 V). TDM has been performed to show the behaviour of electronic excitation processes and electron hole location between the donor and acceptor unit. The binding energies of all molecules are lower than that of R. The lowest is calculated for H3 (0.24 eV) which reflects the highest charge transfer. The reorganization energy value for both the electrons and holes of H2 is lower than R which is indicative of the highest charge transfer rate.

摘要

由于其高效的光伏性能,科学家们正专注于非富勒烯基受体。在此,我们通过对一种著名的实验合成参考化合物R进行结构修饰,设计了四种具有更好光伏性能的新型二噻吩并萘基受体。新设计的分子具有与不同受体(封端)相连的二噻吩并萘核心。受体部分分别为2-(5,6-二氟-2-亚甲基-3-氧代-2,3-二氢茚-1-亚基)丙二腈(H1)、2-(5,6-二氰基-2-亚甲基-3-氧代-2,3-二氢茚-1-亚基)丙二腈(H2)、2-(5-亚甲基-6-氧代-5,6-二氢环戊并[b]噻吩-4-亚基)丙二腈(H3)和2-(3-(二氰基亚甲基)-2,亚甲基-3-氧代-2,3-二氢茚-1-亚基)丙二腈(H4)。将设计分子的光伏参数与参考化合物R的参数进行了比较讨论。与参考化合物R(2.31 eV)相比,所有新设计的分子均显示出降低的HOMO-LUMO能隙(2.17 eV至2.28 eV)。通过前线分子轨道(FMO)图证实了从供体到受体的电荷转移。所有研究的分子在可见光区域均表现出广泛的吸收,且吸收最大值相对于R发生了红移。与R相比,所有研究的分子具有更低的激发能,这表明其电荷转移速率较高。为了评估开路电压,将设计的受体分子与一种著名的供体PBDB-T混合。分子H3具有最高的值(1.88 V)。进行了态密度矩阵(TDM)计算以展示电子激发过程的行为以及供体和受体单元之间的电子空穴位置。所有分子的结合能均低于R的结合能。计算得出H3的结合能最低(0.24 eV),这反映了其最高的电荷转移。H2的电子和空穴的重组能值均低于R,这表明其电荷转移速率最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验