Rasool Alvina, Zahid Saba, Ans Muhammad, Muhammad Shabbir, Ayub Khurshid, Iqbal Javed
Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
ACS Omega. 2021 Dec 30;7(1):844-862. doi: 10.1021/acsomega.1c05504. eCollection 2022 Jan 11.
This quantum mechanical study focuses on the designing of twelve bithieno thiophene (BTTI) central core-based small molecules to explore optoelectronic properties as donor candidates for organic solar cells (OSCs) and hole transport materials (HTMs) accompanied by enhanced charge mobility for perovskite solar cells (PSCs). have been designed by the substitution of thiophene-bridged end-capped acceptors on both side terminals of reference ( are tailored by adopting the same tactic on one side terminal only. MPW1PW91/6-311G (d,p) has been employed for all computational simulations. revealed the highest λ at 639 nm in dichloromethane (DCM) solvent with the lowest of 1.78 eV and dipole moment (20.74 D) in the solvent phase, showing excellent miscibility as compared to the reference. All designed chromophores demonstrated higher estimated and power conversion efficiency (PCE) when compared to , suggesting their prominent operational efficiency. Among all, manifested the highest PCE (47.86%). portrayed the highest electron mobility (0.0041573 eV) and exhibited the highest hole mobility (0.0047178 eV). The outcomes highlight the adequacy of the planned strategies, paving a new route for the development of small-molecule HTMs for PSCs and donor contributors for OSCs.
这项量子力学研究专注于设计十二种基于双噻吩并噻吩(BTTI)中心核的小分子,以探索其作为有机太阳能电池(OSC)的供体候选物和空穴传输材料(HTM)的光电特性,并提高钙钛矿太阳能电池(PSC)的电荷迁移率。通过在参考物两侧末端取代噻吩桥接的封端受体来进行设计,仅在一侧末端采用相同策略进行定制。所有计算模拟均采用MPW1PW91/6 - 311G(d,p)。在二氯甲烷(DCM)溶剂中,其在639 nm处显示出最高波长,溶剂相中的最低能级为1.78 eV,偶极矩为(20.74 D)与参考物相比具有优异的混溶性。与参考物相比时,所有设计的发色团均显示出更高估计的开路电压和功率转换效率(PCE)表明其突出的运行效率效率中表现出最高PCE(47.86%)表现出最高电子迁移率(0.0041573 eV),表现出最高空穴迁移率(0.0047178 eV)。这些结果突出了所规划策略有效性为PSC的小分子HTM和OSC供体贡献者的开发开辟了新途径。 (原文存在一些表述不完整或不准确的地方,翻译可能会稍显生硬,但尽量忠实原文。)