Suppr超能文献

一种使用带有电极阵列的机器学习进行总氯检测的新方法。

A novel method for total chlorine detection using machine learning with electrode arrays.

作者信息

Li Zhe, Huang Shunhao, Chen Juan

机构信息

College of Information Science and Technology, Beijing University of Chemical Technology Beijing 100029 PR China

出版信息

RSC Adv. 2019 Oct 24;9(59):34196-34206. doi: 10.1039/c9ra06609h. eCollection 2019 Oct 23.

Abstract

Chlorine is a common natural water disinfectant, but it reacts with ammonia's nitrogen to form chloramines, which affects the accuracy of free chlorine measurement. In this case, total chlorine can be used as an indicator to evaluate the content of the effective disinfectant. In this article, a novel method to detect total chlorine using an electrode array in water has been proposed. We made the total chlorine sensor and captured the cyclic voltammetry curve of the electrode at different concentrations of chlorine ammonia. Principal component analysis and a peak sampling method were used to extract cyclic voltammetry curves, and the total chlorine prediction model was established by support the vector machine and extreme learning machine. The results show that the best predicting power was achieved by support vector regression with principal component analysis ( = 0.9689). This study provides a simple method for determining total chlorine under certain conditions and likely can be adapted to monitor disinfection and water treatment processes as well.

摘要

氯是一种常见的天然水消毒剂,但它会与氨中的氮发生反应形成氯胺,这会影响游离氯测量的准确性。在这种情况下,总氯可作为评估有效消毒剂含量的指标。本文提出了一种利用水中电极阵列检测总氯的新方法。我们制作了总氯传感器,并采集了电极在不同浓度氯氨下的循环伏安曲线。采用主成分分析和峰值采样方法提取循环伏安曲线,并通过支持向量机和极限学习机建立了总氯预测模型。结果表明,主成分分析支持向量回归法具有最佳的预测能力( = 0.9689)。本研究提供了一种在特定条件下测定总氯的简单方法,并且很可能适用于监测消毒和水处理过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3765/9074044/6f83805f126c/c9ra06609h-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验