Pacheco Marta, Paixão Susana M, Silva Tiago P, Alves Luís
LNEG - Instituto Nacional de Energia e Geologia, IP, Unidade de Bioenergia Estrada do Paço do Lumiar, 22 1649-038 Portugal
RSC Adv. 2019 Aug 14;9(44):25405-25413. doi: 10.1039/c9ra03601f. eCollection 2019 Aug 13.
Biodesulfurization (BDS) is an ecofriendly process that uses microorganisms to efficiently remove sulfur from fossil fuels. To make the BDS process economically competitive with the deep hydrodesulfurization process, which is currently used in the oil industry, it is necessary to improve several factors. One crucial limitation to be overcome, common within many other biotechnological processes, is the cost of the culture medium. Therefore, an important line of work to make BDS scale-up less costly is the optimization of the culture medium composition aiming to reduce operating expenses and maximize biocatalyst production. In this context, the main goal of this study was on the minimization of inorganic key components of sulfur-free mineral (SFM) medium in order to get the maximal production of efficient desulfurizing biocatalysts. Hence, a set of assays was carried out to develop an optimal culture medium containing minimal amounts of nitrogen (N) and magnesium (Mg) sources and trace elements solution (TES). These assays allowed the design of a SFMM (SFM minimum) medium containing 85% N-source, 25% Mg-source and 25% TES. Further validation consisted of testing this minimized medium using two carbon sources: the commercial C-source (glucose + fructose) Jerusalem artichoke juice (JAJ) as a cheaper alternative. SFMM medium allowed microbial cells to almost duplicate their specific desulfurization rate ( ) for both tested C-sources, namely from 2.15 to 3.39 μmoL g (DCW) h for Fru + Glu and from 1.91 to 3.58 μmoL g (DCW) h for JAJ, achieving a similar net 2-hydroxybiphenyl produced per g of consumed sugar (∼17 μmoL g). These results point out the great advantage of using cheaper culture medium that in addition enhances the bioprocess effectiveness, paving the way to a sustainable scale-up for fossil fuel BDS.
生物脱硫(BDS)是一种环保工艺,利用微生物从化石燃料中高效去除硫。为使生物脱硫工艺在经济上能与目前石油工业中使用的深度加氢脱硫工艺竞争,有必要改进几个因素。在许多其他生物技术过程中常见的一个需要克服的关键限制是培养基的成本。因此,使生物脱硫扩大规模成本更低的一项重要工作是优化培养基成分,以降低运营成本并使生物催化剂产量最大化。在此背景下,本研究的主要目标是将无硫矿物(SFM)培养基的无机关键成分降至最低,以实现高效脱硫生物催化剂的最大产量。因此,进行了一系列试验以开发一种含有最少量氮(N)源、镁(Mg)源和微量元素溶液(TES)的优化培养基。这些试验使得能够设计出一种SFM最低(SFMM)培养基,其含有85%的氮源、25%的镁源和25%的TES。进一步的验证包括使用两种碳源测试这种最低限度的培养基:商业碳源(葡萄糖+果糖)和作为更便宜替代品的菊芋汁(JAJ)。对于两种测试碳源,SFMM培养基都能使微生物细胞的比脱硫速率几乎翻倍,即对于果糖+葡萄糖,从2.15 μmoL g(DCW) h增至3.39 μmoL g(DCW) h,对于菊芋汁,从1.91 μmoL g(DCW) h增至3.58 μmoL g(DCW) h,每克消耗糖产生的2-羟基联苯净产量相似(约17 μmoL g)。这些结果指出了使用更便宜培养基的巨大优势,这种培养基还能提高生物过程的效率,为化石燃料生物脱硫的可持续扩大规模铺平道路。