Ali Tammar Hussein, Mandal Amar Mousa, Heidelberg Thorsten, Hussen Rusnah Syahila Duali
Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium.
RSC Adv. 2022 May 5;12(22):13566-13579. doi: 10.1039/d2ra01139e.
Nucleic acid (NA) extraction is an essential step in molecular testing for a wide range of applications. Conventional extraction protocols usually suffer from time consuming removal of non-nucleic acid impurities. In this study, a new magnetic nanoparticle (MNP) is presented to simplify the NA extraction. A core-shell design, comprising of a ferromagnetic core coated with mesoporous silica, forms the basis of the functional nanoparticle. Chemical functionalization of the silica coating includes a multistep synthesis, in which an activated nanoparticle is coupled with a triethylene glycol spaced glycosyl imidazole. The molecular design aims for charge interactions between the imidazolium-based positive nanoparticle surface and nucleic acids, with specific hydrogen bonding between the surface bonded carbohydrate and nucleic acid targets to ensure nucleic acid selectivity and avoid protein contamination. Two different carbohydrates, differing in molecular size, were selected to compare the efficiency in terms of NA extraction. A triethylene glycol spacer provides sufficient flexibility to remove particle surface constraints for the interaction. The Brunauer-Emmett-Teller (BET) analysis shows a significantly larger surface area for the disaccharide-based particles NpFeSiImMalt (∼181 m g) compared to the monosaccharide analogue NpFeSiImGlc (∼116 m g) at small particles sizes (range ∼ 15 nm) and sufficient magnetization (29 emu g) for easy isolation by an external magnetic field. The particles enabled a high DNA particle loading ratio of 30-45 wt% (MNP/DNA ratio), reflecting an efficient extraction process. A high desorption rate (7 min) with more than 86% of unchanged DNA loading was recorded, indicating low damage to the target extract.
核酸(NA)提取是广泛应用于分子检测的关键步骤。传统提取方案通常在去除非核酸杂质方面耗时较长。在本研究中,提出了一种新型磁性纳米颗粒(MNP)以简化NA提取。一种由包覆有介孔二氧化硅的铁磁核组成的核壳设计构成了功能纳米颗粒的基础。二氧化硅涂层的化学功能化包括多步合成,其中活化的纳米颗粒与间隔有三甘醇的糖基咪唑偶联。分子设计旨在实现基于咪唑鎓的带正电纳米颗粒表面与核酸之间的电荷相互作用,以及表面结合的碳水化合物与核酸靶标之间的特定氢键作用,以确保核酸选择性并避免蛋白质污染。选择了两种分子大小不同的碳水化合物来比较NA提取效率。三甘醇间隔基提供了足够的灵活性以消除颗粒表面对相互作用的限制。布鲁诺尔-埃米特-泰勒(BET)分析表明,在小颗粒尺寸(范围约15 nm)下,基于二糖的颗粒NpFeSiImMalt(约181 m²/g)的表面积比单糖类似物NpFeSiImGlc(约116 m²/g)显著更大,并且具有足够的磁化强度(29 emu/g)以便通过外部磁场轻松分离。这些颗粒实现了30 - 45 wt%的高DNA颗粒负载率(MNP/DNA比率),反映了高效的提取过程。记录到高解吸率(7分钟),且DNA负载量保持不变的比例超过86%,表明对目标提取物的损伤较小。