Suppr超能文献

细菌的捕获:用阳离子碳硅烷树枝状大分子修饰的磁性纳米粒子。

Bacteria capture with magnetic nanoparticles modified with cationic carbosilane dendritic systems.

机构信息

Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH); Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH); Alcalá de Henares (Madrid), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain.

Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH); Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH); Alcalá de Henares (Madrid), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain.

出版信息

Biomater Adv. 2022 Feb;133:112622. doi: 10.1016/j.msec.2021.112622. Epub 2021 Dec 21.

Abstract

Bacteria elimination from water sources is key to obtain drinkable water. Hence, the design of systems with ability to interact with bacteria and remove them from water is an attractive proposal. A diversity of polycationic macromolecules has shown bactericide properties, due to interactions with bacteria membranes. In this work, we have grafted cationic carbosilane (CBS) dendrons and dendrimers on the surface of iron oxide magnetic nanoparticles (MNP), leading to NP (ca. 10 nm) that interact with bacteria by covering bacteria membrane. Application of an external magnetic field removes MNP from solution sweeping bacteria attached to them. The interaction of the MNP with Gram-positive S. aureus bacteria is more sensible to the size of dendritic system covering the MNP, whereas interaction with Gram-negative E. coli bacteria is more sensible to the density of cationic groups. Over 500 ppm of NPM, MNP covered with dendrons captured over 90% of both type of bacteria, whereas MNP covered with dendrimers were only able to capture S. aureus bacteria (over 90%) but not E. coli bacteria. Modified MNP were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Z potential and dynamic light scattering (DLS). Interaction with bacteria was analyzed by UV, TEM and scanning electron microscopy (SEM). Moreover, the possibility to recycle cationic dendronized MNP was explored.

摘要

从水源中消除细菌是获得饮用水的关键。因此,设计能够与细菌相互作用并将其从水中去除的系统是一个有吸引力的提议。多种聚阳离子高分子因其与细菌膜的相互作用而表现出杀菌特性。在这项工作中,我们将阳离子碳硅烷(CBS)树枝状大分子和树枝状聚合物接枝到氧化铁磁性纳米粒子(MNP)的表面上,得到了与细菌相互作用的 NP(约 10nm),通过覆盖细菌膜来吸附细菌。施加外部磁场可将 NP 从溶液中去除,从而清除附着在 NP 上的细菌。MNP 与革兰氏阳性的金黄色葡萄球菌(S. aureus)的相互作用对覆盖 MNP 的树枝状系统的大小更为敏感,而与革兰氏阴性的大肠杆菌(E. coli)的相互作用则对阳离子基团的密度更为敏感。超过 500ppm 的 NPM,被树枝状大分子覆盖的 MNP 能够捕获超过 90%的两种类型的细菌,而被树枝状聚合物覆盖的 MNP 只能捕获 S. aureus 细菌(超过 90%),而不能捕获 E. coli 细菌。改性 MNP 采用透射电子显微镜(TEM)、热重分析(TGA)、傅里叶变换红外光谱(FTIR)、Z 电位和动态光散射(DLS)进行了表征。通过 UV、TEM 和扫描电子显微镜(SEM)分析了与细菌的相互作用。此外,还探索了回收阳离子树枝化 MNP 的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验