Suppr超能文献

高孔隙率FeO@还原氧化石墨烯的设计:一种简便的聚甲基丙烯酸诱导组装法

Design of highly porous FeO@reduced graphene oxide a facile PMAA-induced assembly.

作者信息

Wang Huan, Kalubowilage Madumali, Bossmann Stefan H, Amama Placidus B

机构信息

Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan KS 66506 USA

Department of Chemistry, Kansas State University Manhattan KS 66506 USA.

出版信息

RSC Adv. 2019 Sep 4;9(48):27927-27936. doi: 10.1039/c9ra04980k. eCollection 2019 Sep 3.

Abstract

Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous FeO and reduced-graphene-oxide (FeO@RGO) anode materials. We demonstrate the relationship between the media pH and FeO@RGO nanostructure, in terms of dispersion state of PMAA-stabilized FeO@GO sheets at different surrounding pH values, and porosity of the resulted FeO@RGO anode. The anode shows a high surface area of 338.8 m g with a large amount of 10-40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, FeO@RGO delivers high specific-charge capacities of 740 mA h g to 200 mA h g at various current densities of 0.5 A g to 10 A g, and an excellent capacity-retention capability even after long-term charge-discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of FeO-coated graphene materials-which is a major impediment in the synthesis process-and provides a facile synthetic pathway for depositing FeO and other metal oxide nanoparticles on highly porous RGO.

摘要

基于石墨烯材料的合成与加工技术进步为设计能够满足下一代电力设备功率需求的新型锂离子电池(LIB)负极材料提供了契机。在这项工作中,采用聚(甲基丙烯酸)(PMAA)诱导的自组装工艺来设计超介孔FeO和还原氧化石墨烯(FeO@RGO)负极材料。我们从不同环境pH值下PMAA稳定的FeO@GO片层的分散状态以及所得FeO@RGO负极的孔隙率方面,阐述了介质pH值与FeO@RGO纳米结构之间的关系。该负极具有338.8 m²/g的高比表面积,含有大量10 - 40 nm的介孔,这有利于锂离子和电子的动力学过程,并提高了电极耐久性。结果,FeO@RGO在0.5 A/g至10 A/g的各种电流密度下具有740 mA h/g至200 mA h/g的高比充电容量,并且即使经过长期充放电循环仍具有出色的容量保持能力。PMAA诱导的组装方法解决了FeO包覆石墨烯材料分散性差的问题(这是合成过程中的一个主要障碍),并为在高度多孔的RGO上沉积FeO和其他金属氧化物纳米颗粒提供了一种简便的合成途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验