Suppr超能文献

天然人胶原蛋白 I 为组织工程应用提供了一种可行的、具有生理相关性的异种来源替代物:体外和体内比较研究。

Native human collagen type I provides a viable physiologically relevant alternative to xenogeneic sources for tissue engineering applications: A comparative in vitro and in vivo study.

机构信息

Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.

Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

出版信息

J Biomed Mater Res B Appl Biomater. 2022 Oct;110(10):2323-2337. doi: 10.1002/jbm.b.35080. Epub 2022 May 9.

Abstract

Xenogeneic sources of collagen type I remain a common choice for regenerative medicine applications due to ease of availability. Human and animal sources have some similarities, but small variations in amino acid composition can influence the physical properties of collagen, cellular response, and tissue remodeling. The goal of this work is to compare human collagen type I-based hydrogels versus animal-derived collagen type I-based hydrogels, generated from commercially available products, for their physico-chemical properties and for tissue engineering and regenerative medicine applications. Specifically, we evaluated whether the native human skin type I collagen could be used in the three most common research applications of this protein: as a substrate for attachment and proliferation of conventional 2D cell culture; as a source of matrix for a 3D cell culture; and as a source of matrix for tissue engineering. Results showed that species and tissue specific variations of collagen sources significantly impact the physical, chemical, and biological properties of collagen hydrogels including gelation kinetics, swelling ratio, collagen fiber morphology, compressive modulus, stability, and metabolic activity of hMSCs. Tumor constructs formulated with human skin collagen showed a differential response to chemotherapy agents compared to rat tail collagen. Human skin collagen performed comparably to rat tail collagen and enabled assembly of perfused human vessels in vivo. Despite differences in collagen manufacturing methods and supplied forms, the results suggest that commercially available human collagen can be used in lieu of xenogeneic sources to create functional scaffolds, but not all sources of human collagen behave similarly. These factors must be considered in the development of 3D tissues for drug screening and regenerative medicine applications.

摘要

由于易于获得,异种来源的 I 型胶原仍然是再生医学应用的常见选择。人和动物来源的胶原具有一些相似之处,但氨基酸组成的微小差异会影响胶原的物理性质、细胞反应和组织重塑。这项工作的目的是比较基于人 I 型胶原的水凝胶与基于商业可获得产品的动物来源的 I 型胶原水凝胶,评估天然人皮肤 I 型胶原是否可用于该蛋白的三种最常见的研究应用:作为常规 2D 细胞培养附着和增殖的基质;作为 3D 细胞培养的基质;以及作为组织工程的基质。结果表明,胶原来源的种属和组织特异性变异显著影响胶原水凝胶的物理、化学和生物学特性,包括凝胶形成动力学、溶胀比、胶原纤维形态、压缩模量、稳定性和 hMSC 的代谢活性。与人皮肤胶原相比,用肿瘤构建体配方的胶原对化疗药物的反应不同。与人尾胶原相比,人皮肤胶原表现出相似的性能,并能在体内组装可灌注的人血管。尽管胶原制造方法和供应形式存在差异,但结果表明,商业上可获得的人胶原可替代异种来源来制造功能性支架,但并非所有来源的人胶原都表现出相似的行为。在开发用于药物筛选和再生医学应用的 3D 组织时,必须考虑这些因素。

相似文献

2
Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
Acta Biomater. 2018 Jun;73:326-338. doi: 10.1016/j.actbio.2018.04.001. Epub 2018 Apr 9.
3
In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting.
J Biomater Appl. 2021 Mar;35(8):912-923. doi: 10.1177/0885328220959162. Epub 2020 Sep 22.
5
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
6
Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments.
Biofabrication. 2018 Oct 30;11(1):015003. doi: 10.1088/1758-5090/aae543.
7
[Experimental study on collagen hydrogel scaffolds for cartilage tissue engineering].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012 Nov;26(11):1356-61.
8
Approaches for Monitoring of Matrix Development in Hydrogel-Based Engineered Cartilage.
Tissue Eng Part C Methods. 2020 Apr;26(4):225-238. doi: 10.1089/ten.TEC.2020.0014. Epub 2020 Apr 3.
9
Cell-Laden 3D Hydrogels of Type I Collagen Incorporating Bacterial Nanocellulose Fibers.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3638-3647. doi: 10.1021/acsabm.3c00126. Epub 2023 Sep 5.
10
Distinct phenotypes of cancer cells on tissue matrix gel.
Breast Cancer Res. 2020 Jul 31;22(1):82. doi: 10.1186/s13058-020-01321-7.

引用本文的文献

1
Review of collagen type I-based hydrogels: focus on composition-structure-properties relationships.
NPJ Biomed Innov. 2025;2(1):16. doi: 10.1038/s44385-025-00018-w. Epub 2025 May 3.
2
Vascularised organoids: Recent advances and applications in cancer research.
Clin Transl Med. 2025 Mar;15(3):e70258. doi: 10.1002/ctm2.70258.
3
Collagen-Based Scaffolds for Volumetric Muscle Loss Regeneration.
Polymers (Basel). 2024 Dec 6;16(23):3429. doi: 10.3390/polym16233429.
4
Bioengineered in vitro three-dimensional tumor models in endocrine cancers.
Endocr Relat Cancer. 2024 Feb 16;31(4). doi: 10.1530/ERC-23-0344. Print 2024 Apr 1.
5
3D collagen microchamber arrays for combined chemotherapy effect evaluation on cancer cell numbers and migration.
Biomicrofluidics. 2023 Jan 3;17(1):014101. doi: 10.1063/5.0121952. eCollection 2023 Jan.
6
Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels.
Biomacromolecules. 2022 Dec 12;23(12):5137-5147. doi: 10.1021/acs.biomac.2c00985. Epub 2022 Nov 23.

本文引用的文献

1
In vitro characterization of xeno-free clinically relevant human collagen and its applicability in cell-laden 3D bioprinting.
J Biomater Appl. 2021 Mar;35(8):912-923. doi: 10.1177/0885328220959162. Epub 2020 Sep 22.
2
Drug compound screening in single and integrated multi-organoid body-on-a-chip systems.
Biofabrication. 2020 Feb 26;12(2):025017. doi: 10.1088/1758-5090/ab6d36.
4
Model of Patient-Specific Immune-Enhanced Organoids for Immunotherapy Screening: Feasibility Study.
Ann Surg Oncol. 2020 Jun;27(6):1956-1967. doi: 10.1245/s10434-019-08143-8. Epub 2019 Dec 19.
5
Pleural Effusion Aspirate for use in 3D Lung Cancer Modeling and Chemotherapy Screening.
ACS Biomater Sci Eng. 2019 Apr 8;5(4):1937-1943. doi: 10.1021/acsbiomaterials.8b01356. Epub 2019 Mar 8.
6
Hydrolyzed Collagen-Sources and Applications.
Molecules. 2019 Nov 7;24(22):4031. doi: 10.3390/molecules24224031.
8
The great escape: tumour cell plasticity in resistance to targeted therapy.
Nat Rev Drug Discov. 2020 Jan;19(1):39-56. doi: 10.1038/s41573-019-0044-1. Epub 2019 Oct 10.
9
Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109930. doi: 10.1016/j.msec.2019.109930. Epub 2019 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验