Department of Genetics, School of Medicine, and Renaissance Computing Institute, University of North Carolina, Chapel Hill, North Carolina, USA.
Nicholas School of the Environment, Duke University, Durham, North Carolina, USA.
Environ Health Perspect. 2022 May;130(5):57005. doi: 10.1289/EHP6779. Epub 2022 May 9.
Research suggests environmental contaminants can impact metabolic health; however, high costs prohibit screening of putative metabolic disruptors. High-throughput screening programs, such as ToxCast, hold promise to reduce testing gaps and prioritize higher-order () testing.
We sought to ) examine the concordance of testing in 3T3-L1 cells to a targeted literature review for 38 semivolatile environmental chemicals, and ) assess the predictive utility of various expert models using ToxCast data against the set of 38 reference chemicals.
Using a set of 38 chemicals with previously published results in 3T3-L1 cells, we performed a metabolism-targeted literature review to determine consensus activity determinations. To assess ToxCast predictive utility, we used two published ToxPi models: ) the 8-Slice model published by Janesick et al. (2016) and ) the 5-Slice model published by Auerbach et al. (2016). We examined the performance of the two models against the Janesick results and our own 38-chemical reference set. We further evaluated the predictive performance of various modifications to these models using cytotoxicity filtering approaches and validated our best-performing model with new chemical testing in 3T3-L1 cells.
The literature review revealed relevant publications for 30 out of the 38 chemicals (the remaining 8 chemicals were only examined in our previous 3T3-L1 testing). We observed a balanced accuracy (average of sensitivity and specificity) of 0.86 comparing our previous results to the literature-derived calls. ToxPi models provided balanced accuracies ranging from 0.55 to 0.88, depending on the model specifications and reference set. Validation chemical testing correctly predicted 29 of 30 chemicals as per 3T3-L1 testing, suggesting good adipogenic prediction performance for our best adapted model.
Using the most recent ToxCast data and an updated ToxPi model, we found ToxCast performed similarly to that of our own 3T3-L1 testing in predicting consensus calls. Furthermore, we provide the full ranked list of largely untested chemicals with ToxPi scores that predict adipogenic activity and that require further investigation. https://doi.org/10.1289/EHP6779.
研究表明,环境污染物会影响代谢健康;然而,高昂的成本使得潜在代谢干扰物的筛选无法进行。高通量筛选计划,如 ToxCast,有望减少测试差距,并优先进行更高阶的测试。
我们旨在)检查 3T3-L1 细胞中的测试与针对 38 种半挥发性环境化学物质的目标文献综述的一致性,以及)使用 ToxCast 数据评估各种专家模型对一组 38 种参考化学物质的预测效用。
使用一组具有先前在 3T3-L1 细胞中发表结果的 38 种化学物质,我们进行了一项代谢靶向文献综述,以确定共识活性测定。为了评估 ToxCast 的预测效用,我们使用了两个已发表的 ToxPi 模型:)Janesick 等人(2016 年)发表的 8-Slice 模型和)Auerbach 等人(2016 年)发表的 5-Slice 模型。我们检查了这两个模型在 Janesick 结果和我们自己的 38 种化学物质参考集中的性能。我们还使用细胞毒性过滤方法评估了这些模型的各种修改的预测性能,并使用新的 3T3-L1 细胞化学测试验证了我们表现最佳的模型。
文献综述显示,38 种化学物质中有 30 种(其余 8 种仅在我们之前的 3T3-L1 测试中进行了测试)有相关出版物。与文献来源的结果相比,我们观察到的平均敏感性和特异性的平衡准确性(balanced accuracy)为 0.86。ToxPi 模型提供的平衡准确性范围为 0.55 至 0.88,具体取决于模型规格和参考集。验证性化学测试正确预测了 30 种化学物质中的 29 种,这表明我们最佳适应的模型对脂肪形成预测具有良好的性能。
使用最新的 ToxCast 数据和更新的 ToxPi 模型,我们发现 ToxCast 在预测共识结果方面的表现与我们自己的 3T3-L1 测试相似。此外,我们提供了具有 ToxPi 分数的大量未经测试的化学物质的完整排名列表,这些化学物质预测具有脂肪形成活性,需要进一步研究。https://doi.org/10.1289/EHP6779。