Suppr超能文献

数据才是关键:人工智能在印医疗领域的转折点。

It's the data, stupid: Inflection point for Artificial Intelligence in Indian healthcare.

机构信息

Department of Obstetrics & Gynecology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.

Department of Hospital Administration, All India Institute of Medical Sciences (AIIMS), New Delhi, India.

出版信息

Artif Intell Med. 2022 Jun;128:102300. doi: 10.1016/j.artmed.2022.102300. Epub 2022 Apr 6.

Abstract

Indian healthcare is fast growing and with significant chunk of it being in small, fragmented, informal sector; Artificial Intelligence (AI) is pegged as a magical tool for a better healthcare system. There is an inclination to merely mimic the US approach in the on-going policy making and legislative exercises, which can have serious fallouts for Indian healthcare. India needs a different approach to suite her unique requirements. In this regard, each of the five stages in AI development lifecycle has been analyzed in the light of current on-ground realities. These boil down to three fold challenges of how to increase adoption of digital health, prevent data silos and create maximum value from data. Availability of quality data for value addition without barriers and restrictions is the common denominator for leveraging the full potential of AI. This requires liberal policies enabling secondary use of data in developing countries with rapidly growing healthcare sector akin to India. This has to be carefully balanced with data privacy and security. Restrictive healthcare data policies and laws can slow down adoption of digitization, perpetuate status-quo, be biased towards the incumbent players, cause Industry stagnation and thus will do more harm than good. It is therefore the data policies that will make or break AI in Indian healthcare.

摘要

印度的医疗保健行业正在迅速发展,其中相当大的一部分是在规模较小、分散、非正规的部门;人工智能(AI)被视为改善医疗保健系统的神奇工具。在当前的政策制定和立法工作中,有一种倾向于仅仅模仿美国的方法,这可能会对印度的医疗保健产生严重的影响。印度需要一种不同的方法来满足她独特的需求。在这方面,已经根据当前的实际情况分析了人工智能发展生命周期的五个阶段。这些归结为如何增加数字医疗保健的采用、防止数据孤岛以及从数据中创造最大价值的三重挑战。在没有障碍和限制的情况下,为了增加附加值而提供优质数据是利用人工智能全部潜力的共同点。这需要制定宽松的政策,使数据在医疗保健部门快速发展的发展中国家能够被二次利用,这与印度的情况类似。这必须与数据隐私和安全谨慎地平衡。限制性的医疗保健数据政策和法规可能会减缓数字化的采用,使现状永久化,偏向现有参与者,导致行业停滞,弊大于利。因此,数据政策将决定人工智能在印度医疗保健中的成败。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验