Suppr超能文献

计算机断层扫描中的最小二乘法和最大似然法。

Least-squares and maximum-likelihood in computed tomography.

作者信息

Grewar Murdock G, Myers Glenn R, Kingston Andrew M

机构信息

The Australian National University, Department of Applied Mathematics, RSPhys, Canberra, Australian Capital Territory, Australia.

The Australian National University, CTLab: National Laboratory for Micro Computed-Tomography, Advanced Imaging Precinct, Canberra, Australian Capital Territory, Australia.

出版信息

J Med Imaging (Bellingham). 2022 May;9(3):031508. doi: 10.1117/1.JMI.9.3.031508. Epub 2022 May 6.

Abstract

Existing maximum-likelihood (ML) methods in computed tomography usually require significant computing resources to implement, and/or are limited to particular measurement noise models that are representative of the simplest theoretical archetypes. There is an absence of general procedures to produce rapid ML methods that account precisely for the noise model of a given experiment. We investigate a mathematical-computational procedure of producing constrained quadratic optimization reconstruction algorithms that fill this niche, requiring less computing resources than the exact (expectation-maximization) procedures and having comparable performance with least-squares iterative methods. This allows high-fidelity reconstructions to be practically achievable for largely arbitrary noise models. We identify a systematic mathematical procedure to produce constrained quadratic optimization methods that maximize tomogram likelihood under arbitrary noise models, which are tunable to specific characteristics of the experiment. This procedure is applied to a general theory of mixed Poisson-Gaussian noise in transmission tomography, and to a theory of invertible linear transformations of measurement intensity subject to Poisson noise. We perform tomographic reconstructions of a very highly attenuating two-dimensional object phantom and compare the speed and fidelity of reconstruction with alternative quadratic metrics ( -minimization among others). Quantitative metrics reveal that reconstructions under our systematically produced quadratic methods achieved significantly greater reconstruction fidelity with less computation than the optimized conventional, untuned quadratic metrics with a comparable procedure. Constrained quadratic optimization methods appear to apply sufficiently good approximations to achieve a high reconstruction fidelity with a simple quadratic metric amenable to a broad class of minimization methods. These preliminary simulation-based results are very promising and suggest that such methods may be used to produce high-fidelity reconstructions with less computation than many other statistical methods. By design, these quadratic methods are also explicit and quantitative in their description, allowing fine-tuning according to the specific uncertainties and noise model of the experiment. Further research is required to ascertain the full practical potential of these methods.

摘要

计算机断层扫描中现有的最大似然(ML)方法通常需要大量计算资源来实现,并且/或者仅限于代表最简单理论原型的特定测量噪声模型。目前缺乏能够精确考虑给定实验噪声模型的快速ML方法的通用程序。我们研究了一种数学计算程序,该程序可生成受限二次优化重建算法,以填补这一空白,与精确(期望最大化)程序相比,该算法所需计算资源更少,且与最小二乘迭代方法具有相当的性能。这使得对于基本上任意的噪声模型,都能实际实现高保真重建。我们确定了一种系统的数学程序,用于生成在任意噪声模型下最大化断层图像似然性的受限二次优化方法,这些方法可根据实验的特定特征进行调整。该程序应用于透射断层扫描中混合泊松 - 高斯噪声的一般理论,以及受泊松噪声影响的测量强度的可逆线性变换理论。我们对一个高度衰减的二维物体模型进行断层重建,并将重建的速度和保真度与其他二次度量(如 - 最小化等)进行比较。定量度量表明,与具有可比程序的优化传统未调整二次度量相比,我们系统生成的二次方法下的重建在计算量更少的情况下实现了显著更高的重建保真度。受限二次优化方法似乎应用了足够好的近似,以使用适用于广泛一类最小化方法的简单二次度量实现高重建保真度。这些基于初步模拟的结果非常有前景,表明此类方法可用于以比许多其他统计方法更少的计算量生成高保真重建。通过设计,这些二次方法在描述上也是明确和定量的,允许根据实验的特定不确定性和噪声模型进行微调。需要进一步研究以确定这些方法的全部实际潜力。

相似文献

1
Least-squares and maximum-likelihood in computed tomography.计算机断层扫描中的最小二乘法和最大似然法。
J Med Imaging (Bellingham). 2022 May;9(3):031508. doi: 10.1117/1.JMI.9.3.031508. Epub 2022 May 6.

本文引用的文献

2
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
8
Maximum likelihood reconstruction for emission tomography.发射型计算机断层最大似然重建。
IEEE Trans Med Imaging. 1982;1(2):113-22. doi: 10.1109/TMI.1982.4307558.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验