Sobhaninia Zahra, Rafiei Shima, Emami Ali, Karimi Nader, Najarian Kayvan, Samavi Shadrokh, Reza Soroushmehr S M
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6545-6548. doi: 10.1109/EMBC.2019.8856981.
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
超声成像在孕期是一项标准检查,可用于测量特定生物特征参数以进行产前诊断和估算孕周。胎儿头围(HC)是确定胎儿生长和健康状况的重要因素之一。本文提出了一种多任务深度卷积神经网络,通过最小化由分割骰子分数和椭圆参数的均方误差组成的复合代价函数,自动分割和估计头围椭圆。对不同孕期胎儿超声数据集的实验结果表明,分割结果和提取的头围与放射科医生的标注匹配良好。所获得的胎儿头部分割骰子分数和头围评估准确率与当前最优水平相当。