Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA.
Nucleic Acids Res. 2022 May 20;50(9):4860-4876. doi: 10.1093/nar/gkac339.
The expansion of d(CGG) trinucleotide repeats (TRs) lies behind several important neurodegenerative diseases. Atypical DNA secondary structures have been shown to trigger TR expansion: their characterization is important for a molecular understanding of TR disease. CD spectroscopy experiments in the last decade have unequivocally demonstrated that CGG runs adopt a left-handed Z-DNA conformation, whose features remain uncertain because it entails accommodating GG mismatches. In order to find this missing motif, we have carried out molecular dynamics (MD) simulations to explore all the possible Z-DNA helices that potentially form after the transition from B- to Z-DNA. Such helices combine either CpG or GpC Watson-Crick steps in Z-DNA form with GG-mismatch conformations set as either intrahelical or extrahelical; and participating in BZ or ZZ junctions or in alternately extruded conformations. Characterization of the stability and structural features (especially overall left-handedness, higher-temperature and steered MD simulations) identified two novel Z-DNA helices: the most stable one displays alternately extruded Gs, and is followed by a helix with symmetrically extruded ZZ junctions. The G-extrusion favors a seamless stacking of the Watson-Crick base pairs; extruded Gs favor syn conformations and display hydrogen-bonding and stacking interactions. Such conformations could have the potential to hijack the MMR complex, thus triggering further expansion.
CGG 三核苷酸重复(TR)的扩展是几种重要神经退行性疾病的根源。已经表明,非典型 DNA 二级结构会引发 TR 扩展:它们的特征对于理解 TR 疾病的分子机制非常重要。过去十年的 CD 光谱实验明确证明,CGG 序列采用左手 Z-DNA 构象,但其特征仍然不确定,因为它需要容纳 GG 错配。为了找到这个缺失的模体,我们进行了分子动力学(MD)模拟,以探索从 B-DNA 向 Z-DNA 转变后可能形成的所有可能的 Z-DNA 螺旋。这些螺旋组合了 Z-DNA 形式中的 CpG 或 GpC Watson-Crick 步骤,以及设置为内螺旋或外螺旋的 GG 错配构象;并参与 BZ 或 ZZ 接头或交替挤出构象。稳定性和结构特征的表征(尤其是整体左手性、高温和导向 MD 模拟)确定了两种新的 Z-DNA 螺旋:最稳定的螺旋显示交替挤出的 Gs,其次是具有对称挤出的 ZZ 接头的螺旋。G 挤出有利于 Watson-Crick 碱基对的无缝堆叠;挤出的 Gs 有利于顺式构象,并显示氢键和堆叠相互作用。这些构象有可能劫持 MMR 复合物,从而引发进一步的扩展。