Suppr超能文献

人类通过绘画任务揭示的单次泛化。

One-shot generalization in humans revealed through a drawing task.

机构信息

Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany.

Laboratory of Experimental Psychology, University of Leuven (KU Leuven), Leuven, Belgium.

出版信息

Elife. 2022 May 10;11:e75485. doi: 10.7554/eLife.75485.

Abstract

Humans have the amazing ability to learn new visual concepts from just a single exemplar. How we achieve this remains mysterious. State-of-the-art theories suggest observers rely on internal 'generative models', which not only describe observed objects, but can also synthesize novel variations. However, compelling evidence for generative models in human one-shot learning remains sparse. In most studies, participants merely compare candidate objects created by the experimenters, rather than generating their own ideas. Here, we overcame this key limitation by presenting participants with 2D 'Exemplar' shapes and asking them to draw their own 'Variations' belonging to the same class. The drawings reveal that participants inferred-and synthesized-genuine novel categories that were far more varied than mere copies. Yet, there was striking agreement between participants about which shape features were most distinctive, and these tended to be preserved in the drawn Variations. Indeed, swapping distinctive parts caused objects to swap apparent category. Our findings suggest that internal generative models are key to how humans generalize from single exemplars. When observers see a novel object for the first time, they identify its most distinctive features and infer a generative model of its shape, allowing them to mentally synthesize plausible variants.

摘要

人类具有从单个范例中学习新视觉概念的惊人能力。我们如何实现这一点仍然是个谜。最先进的理论表明,观察者依赖于内部的“生成模型”,这些模型不仅可以描述观察到的物体,还可以合成新颖的变体。然而,在人类单次学习中生成模型的有力证据仍然很少。在大多数研究中,参与者只是比较实验者创造的候选对象,而不是生成自己的想法。在这里,我们通过向参与者展示 2D“范例”形状并要求他们绘制自己属于同一类别的“变体”来克服这一关键限制。这些绘画揭示了参与者推断和综合出真正新颖的类别,这些类别比仅仅是复制的类别更加多样化。然而,参与者之间对于哪些形状特征最具区别性存在惊人的一致性,并且这些特征往往在绘制的变体中得以保留。事实上,交换特征部分会导致物体的类别发生变化。我们的研究结果表明,内部生成模型是人类如何从单个范例中进行泛化的关键。当观察者第一次看到一个新物体时,他们会识别出它最具特色的特征,并推断出它形状的生成模型,从而使他们能够在脑海中合成合理的变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a29/9090327/6a3b7497d95e/elife-75485-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验