Suppr超能文献

用于基因调控网络的鲁棒卡尔曼滤波器状态估计

Robust KALMAN Filter State Estimation for Gene Regulatory Networks.

作者信息

Abolmasoumi Amir H, Mohammadian Mohammad, Mili Lamine

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1395-1405. doi: 10.1109/TCBB.2022.3173969. Epub 2023 Apr 3.

Abstract

This paper proposes a revised version of the robust generalized maximum likelihood (GM)-type unscented KALMAN filter (GM-UKF) for the state estimation of gene regulatory networks (GRNs) in the presence of different types of deviations from assumptions. As known, the parameters and the power of the assumed noises within the GRN model may change abruptly as a result of jump behavior and bursting process in transcription and translation phases. Moreover, there may be outlying samples among genomic measurement data. Some other outliers may also occur in the model dynamics. The outliers may be misinterpreted by the filtering method if not detected and downweighted. To deal with all such deviations, a robust GM-UKF is designed that includes some modifications to address the challenges in calculating the projection statistics in GRNs such as the nonlinear behavior and the natural distance of the states. The proposed filter is compared to four Bayesian filters, i.e., the conventional UKF, the H -UKF, the downweighting UKF (DW-UKF), and a modified version of the GM-UKF, the so-called maximum-likelihood UKF(M-UKF). The outcome results demonstrate that the GM-UKF outperforms other methods for all outlier types while the H -UKF is appropriate for the changes in noise powers.

摘要

本文针对存在不同类型假设偏差情况下的基因调控网络(GRN)状态估计问题,提出了一种改进的鲁棒广义最大似然(GM)型无迹卡尔曼滤波器(GM-UKF)。众所周知,由于转录和翻译阶段的跳跃行为和爆发过程,GRN模型中假设噪声的参数和功率可能会突然变化。此外,基因组测量数据中可能存在异常样本。模型动态中也可能出现其他一些异常值。如果未检测到并降低其权重,这些异常值可能会被滤波方法误判。为了处理所有这些偏差,设计了一种鲁棒GM-UKF,其中包括一些修改,以应对GRN中计算投影统计量时面临的挑战,如非线性行为和状态的自然距离。将所提出的滤波器与四种贝叶斯滤波器进行比较,即传统的UKF、H-UKF、降权UKF(DW-UKF)以及GM-UKF的一个修改版本,即所谓的最大似然UKF(M-UKF)。结果表明,对于所有类型的异常值,GM-UKF均优于其他方法,而H-UKF适用于噪声功率的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验