文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自适应无味卡尔曼滤波在时变噪声协方差未知情况下的目标跟踪

Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance.

机构信息

School of Automation Science and Electrical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China.

Science and Technology on Aircraft Control Laboratory, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, China.

出版信息

Sensors (Basel). 2019 Mar 19;19(6):1371. doi: 10.3390/s19061371.


DOI:10.3390/s19061371
PMID:30893837
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6470672/
Abstract

The unscented Kalman filter (UKF) is widely used to address the nonlinear problems in target tracking. However, this standard UKF shows unstable performance whenever the noise covariance mismatches. Furthermore, in consideration of the deficiencies of the current adaptive UKF algorithm, this paper proposes a new adaptive UKF scheme for the time-varying noise covariance problems. First of all, the cross-correlation between the innovation and residual sequences is given and proven. On this basis, a linear matrix equation deduced from the innovation and residual sequences is applied to resolve the process noise covariance in real time. Using the redundant measurements, an improved measurement-based adaptive Kalman filtering algorithm is applied to estimate the measurement noise covariance, which is entirely immune to the state estimation. The results of the simulation indicate that under the condition of time-varying noise covariances, the proposed adaptive UKF outperforms the standard UKF and the current adaptive UKF algorithm, hence improving tracking accuracy and stability.

摘要

无迹卡尔曼滤波器(UKF)被广泛用于解决目标跟踪中的非线性问题。然而,当噪声协方差不匹配时,这种标准的 UKF 表现出不稳定的性能。此外,考虑到当前自适应 UKF 算法的缺陷,本文提出了一种新的自适应 UKF 方案,用于解决时变噪声协方差问题。首先,给出并证明了新息和残差序列之间的互相关。在此基础上,利用新息和残差序列推导出一个线性矩阵方程,实时求解过程噪声协方差。利用冗余测量值,应用改进的基于测量的自适应卡尔曼滤波算法来估计测量噪声协方差,该算法完全不受状态估计的影响。仿真结果表明,在时变噪声协方差条件下,所提出的自适应 UKF 优于标准 UKF 和当前的自适应 UKF 算法,从而提高了跟踪精度和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/506014eb1f91/sensors-19-01371-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/1a5d898b6fbb/sensors-19-01371-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/ceccf0674dd6/sensors-19-01371-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/3c52d1995b74/sensors-19-01371-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/2bbef63fee83/sensors-19-01371-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/12a9d1115925/sensors-19-01371-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/7447e64b8c28/sensors-19-01371-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/506014eb1f91/sensors-19-01371-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/1a5d898b6fbb/sensors-19-01371-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/ceccf0674dd6/sensors-19-01371-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/3c52d1995b74/sensors-19-01371-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/2bbef63fee83/sensors-19-01371-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/12a9d1115925/sensors-19-01371-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/7447e64b8c28/sensors-19-01371-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cf/6470672/506014eb1f91/sensors-19-01371-g007.jpg

相似文献

[1]
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance.

Sensors (Basel). 2019-3-19

[2]
Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion.

Sensors (Basel). 2021-8-29

[3]
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

Sensors (Basel). 2018-3-7

[4]
An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

Sensors (Basel). 2017-9-5

[5]
An Adaptive Spatial Target Tracking Method Based on Unscented Kalman Filter.

Sensors (Basel). 2024-9-20

[6]
Robust adaptive unscented Kalman filter and its application in initial alignment for body frame velocity aided strapdown inertial navigation system.

Rev Sci Instrum. 2018-11

[7]
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.

Sensors (Basel). 2016-9-20

[8]
Adaptive unscented Kalman filter for neuronal state and parameter estimation.

J Comput Neurosci. 2023-5

[9]
Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation.

Sensors (Basel). 2019-12-20

[10]
Quaternion-Based Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter.

Sensors (Basel). 2019-5-23

引用本文的文献

[1]
Model Predictive Control for Speed-Dependent Active Suspension System with Road Preview Information.

Sensors (Basel). 2024-4-1

[2]
Parallelized Particle Swarm Optimization on FPGA for Realtime Ballistic Target Tracking.

Sensors (Basel). 2023-10-13

[3]
Improved Multiple-Model Adaptive Estimation Method for Integrated Navigation with Time-Varying Noise.

Sensors (Basel). 2022-8-10

[4]
Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets.

Sensors (Basel). 2022-7-19

[5]
Mid-State Kalman Filter for Nonlinear Problems.

Sensors (Basel). 2022-2-9

[6]
Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion.

Sensors (Basel). 2021-8-29

[7]
Design of Nonlinear Autoregressive Exogenous Model Based Intelligence Computing for Efficient State Estimation of Underwater Passive Target.

Entropy (Basel). 2021-4-29

[8]
A Method for Improving the Detection Accuracy of the Spot Position of the Four-Quadrant Detector in a Free Space Optical Communication System.

Sensors (Basel). 2020-12-14

[9]
Motion State Estimation of Target Vehicle under Unknown Time-Varying Noises Based on Improved Square-Root Cubature Kalman Filter.

Sensors (Basel). 2020-5-4

本文引用的文献

[1]
An Adaptive Low-Cost INS/GNSS Tightly-Coupled Integration Architecture Based on Redundant Measurement Noise Covariance Estimation.

Sensors (Basel). 2017-9-5

[2]
A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model-Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network.

Sensors (Basel). 2017-6-18

[3]
An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding Measurement in a GNSS Signal-Challenged Environment.

Sensors (Basel). 2015-9-18

[4]
Tracking a maneuvering target using neural fuzzy network.

IEEE Trans Syst Man Cybern B Cybern. 2004-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索