Suppr超能文献

相似文献

1
: A Program for Electrostatic Parameterizations of Additive and Induced Dipole Polarizable Force Fields.
J Chem Theory Comput. 2022 Jun 14;18(6):3654-3670. doi: 10.1021/acs.jctc.2c00230. Epub 2022 May 10.
2
Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2023 Feb 14;19(3):924-941. doi: 10.1021/acs.jctc.2c01048. Epub 2023 Jan 25.
3
Streamlining and Optimizing Strategies of Electrostatic Parameterization.
J Chem Theory Comput. 2023 Sep 26;19(18):6353-6365. doi: 10.1021/acs.jctc.3c00659. Epub 2023 Sep 7.
5
Evaluation of Representations and Response Models for Polarizable Force Fields.
J Phys Chem B. 2016 Aug 25;120(33):8668-84. doi: 10.1021/acs.jpcb.6b03392. Epub 2016 Jun 16.
6
A Fast, Convenient, Polarizable Electrostatic Model for Molecular Dynamics.
J Chem Theory Comput. 2024 Feb 13;20(3):1293-1305. doi: 10.1021/acs.jctc.3c01171. Epub 2024 Jan 19.
7
Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models.
Biophys J. 2009 Jan;96(2):385-402. doi: 10.1016/j.bpj.2008.09.048.
9
Advancement of polarizable force field and its use for molecular modeling and design.
Adv Exp Med Biol. 2015;827:19-32. doi: 10.1007/978-94-017-9245-5_3.
10
Assessment of Amino Acid Electrostatic Parametrizations of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2024 Mar 12;20(5):2098-2110. doi: 10.1021/acs.jctc.3c01347. Epub 2024 Feb 23.

引用本文的文献

3
Performance Tuning of Polarizable Gaussian Multipole Model in Molecular Dynamics Simulations.
J Chem Theory Comput. 2025 Jan 28;21(2):847-858. doi: 10.1021/acs.jctc.4c01368. Epub 2025 Jan 8.
5
Assessment of Amino Acid Electrostatic Parametrizations of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2024 Mar 12;20(5):2098-2110. doi: 10.1021/acs.jctc.3c01347. Epub 2024 Feb 23.
6
AmberTools.
J Chem Inf Model. 2023 Oct 23;63(20):6183-6191. doi: 10.1021/acs.jcim.3c01153. Epub 2023 Oct 8.
7
Streamlining and Optimizing Strategies of Electrostatic Parameterization.
J Chem Theory Comput. 2023 Sep 26;19(18):6353-6365. doi: 10.1021/acs.jctc.3c00659. Epub 2023 Sep 7.
8
Optimal Scheme to Achieve Energy Conservation in Induced Dipole Models.
J Chem Theory Comput. 2023 Aug 8;19(15):5047-5057. doi: 10.1021/acs.jctc.3c00226. Epub 2023 Jul 13.
9
Development of AMOEBA Polarizable Force Field for Rare-Earth La Interaction with Bioinspired Ligands.
J Phys Chem B. 2023 Feb 16;127(6):1367-1375. doi: 10.1021/acs.jpcb.2c07237. Epub 2023 Feb 3.
10
Transferability of the Electrostatic Parameters of the Polarizable Gaussian Multipole Model.
J Chem Theory Comput. 2023 Feb 14;19(3):924-941. doi: 10.1021/acs.jctc.2c01048. Epub 2023 Jan 25.

本文引用的文献

2
Stress tensor and constant pressure simulation for polarizable Gaussian multipole model.
J Chem Phys. 2022 Mar 21;156(11):114114. doi: 10.1063/5.0082548.
3
Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field.
J Chem Theory Comput. 2022 Mar 8;18(3):1711-1725. doi: 10.1021/acs.jctc.1c01166. Epub 2022 Feb 11.
4
Development of a Pantetheine Force Field Library for Molecular Modeling.
J Chem Inf Model. 2021 Feb 22;61(2):856-868. doi: 10.1021/acs.jcim.0c01384. Epub 2021 Feb 3.
6
ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
J Chem Theory Comput. 2020 Jan 14;16(1):528-552. doi: 10.1021/acs.jctc.9b00591. Epub 2019 Dec 3.
7
Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins.
J Comput Chem. 2020 Feb 15;41(5):439-448. doi: 10.1002/jcc.26067. Epub 2019 Sep 13.
9
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. doi: 10.1021/acs.jctc.5b00255. Epub 2015 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验