Suppr超能文献

发展 AMOEBA 极化力场以研究生物启发配体与稀土镧的相互作用。

Development of AMOEBA Polarizable Force Field for Rare-Earth La Interaction with Bioinspired Ligands.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas78712, United States.

Electronic, Optical, and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico87185, United States.

出版信息

J Phys Chem B. 2023 Feb 16;127(6):1367-1375. doi: 10.1021/acs.jpcb.2c07237. Epub 2023 Feb 3.

Abstract

Rare-earth metals (REMs) are crucial for many important industries, such as power generation and storage, in addition to cancer treatment and medical imaging. One promising new REM refinement approach involves mimicking the highly selective and efficient binding of REMs observed in relatively recently discovered proteins. However, realizing any such bioinspired approach requires an understanding of the biological recognition mechanisms. Here, we developed a new classical polarizable force field based on the AMOEBA framework for modeling a lanthanum ion (La) interacting with water, acetate, and acetamide, which have been found to coordinate the ion in proteins. The parameters were derived by comparing to high-level quantum mechanical (QM) calculations that include relativistic effects. The AMOEBA model, with advanced atomic multipoles and electronic polarization, is successful in capturing both the QM distance-dependent La-ligand interaction energies and experimental hydration free energy. A new scheme for pairwise polarization damping (POLPAIR) was developed to describe the polarization energy in La interactions with both charged and neutral ligands. Simulations of La in water showed water coordination numbers and ion-water distances consistent with previous experimental and theoretical findings. Water residence time analysis revealed both fast and slow kinetics in water exchange around the ion. This new model will allow investigation of fully solvated lanthanum ion-protein systems using GPU-accelerated dynamics simulations to gain insights on binding selectivity, which may be applied to the design of synthetic analogues.

摘要

稀土金属 (REMs) 在许多重要行业中都至关重要,例如发电和储能,以及癌症治疗和医学成像。一种有前途的新型 REM 精炼方法涉及模拟 REM 在最近发现的蛋白质中观察到的高度选择性和高效结合。然而,要实现任何这样的仿生方法,都需要了解生物识别机制。在这里,我们开发了一种新的基于 AMOEBA 框架的经典极化力场,用于模拟镧离子 (La) 与水、乙酸盐和乙酰胺的相互作用,这些物质已被发现可在蛋白质中配位离子。参数是通过与包括相对论效应在内的高水平量子力学 (QM) 计算进行比较得出的。带有先进原子多极子和电子极化的 AMOEBA 模型成功地捕获了 QM 距离依赖性 La-配体相互作用能和实验水合自由能。开发了一种新的成对极化阻尼 (POLPAIR) 方案来描述带电荷和中性配体的 La 相互作用中的极化能。在水中模拟 La 时,水配位数和离子-水距离与先前的实验和理论发现一致。水停留时间分析显示,离子周围的水交换具有快速和慢速动力学。该新模型将允许使用 GPU 加速动力学模拟研究完全溶剂化的镧离子-蛋白质系统,以深入了解结合选择性,这可应用于合成类似物的设计。

相似文献

5
Ab Initio Extension of the AMOEBA Polarizable Force Field to Fe(2.).将AMOEBA可极化力场从头算扩展至Fe(2+)。
J Chem Theory Comput. 2013 Jul 9;9(7):3062-71. doi: 10.1021/ct400237r. Epub 2013 Jun 19.
8
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.基于经典德拜振荡器的分子离子极化力场。
J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17.

本文引用的文献

1
Carboxylate binding prefers two cations to one.羧酸根优先与两个阳离子结合,而不是一个。
Phys Chem Chem Phys. 2022 Sep 21;24(36):22198-22205. doi: 10.1039/d2cp03561h.
2
Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory.水合阴离子:从团簇到具有准化学理论的体相溶液。
Acc Chem Res. 2022 Aug 16;55(16):2201-2212. doi: 10.1021/acs.accounts.2c00078. Epub 2022 Jul 13.
5
Atomic Polarizabilities for Interactive Dipole Induction Models.相互作用偶极感应模型的原子极化率。
J Chem Inf Model. 2022 Jan 10;62(1):79-87. doi: 10.1021/acs.jcim.1c01307. Epub 2021 Dec 28.
6
Thermodynamics of ion binding and occupancy in potassium channels.钾通道中离子结合与占据的热力学
Chem Sci. 2021 Jun 2;12(25):8920-8930. doi: 10.1039/d1sc01887f. eCollection 2021 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验