Ma Wen, Sun Meng, Huang Dahong, Chu Chiheng, Hedtke Tayler, Wang Xiaoxiong, Zhao Yumeng, Kim Jae-Hong, Elimelech Menachem
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.
Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
Environ Sci Technol. 2022 Jun 21;56(12):8733-8745. doi: 10.1021/acs.est.1c08937. Epub 2022 May 10.
The superior catalytic property of single-atom catalysts (SACs) renders them highly desirable in the energy and environmental fields. However, using SACs for water decontamination is hindered by their limited spatial distribution and density on engineered surfaces and low stability in complex aqueous environments. Herein, we present copper SACs (Cu) anchored on a thiol-doped reactive membrane for water purification. We demonstrate that the fabricated Cu features a Cu-S coordination─one copper atom is bridged by two thiolate sulfur atoms, resulting in high-density Cu-SACs on the membrane (2.1 ± 0.3 Cu atoms per nm). The Cu-SACs activate peroxide to generate hydroxyl radicals, exhibiting fast kinetics, which are 40-fold higher than those of nanoparticulate Cu catalysts. The Cu-functionalized membrane oxidatively removes organic pollutants from feedwater in the presence of peroxide, achieving efficient water purification. We provide evidence that a dual-site cascade mechanism is responsible for regeneration of Cu. Specifically, one of the two linked sulfur atoms detaches the oxidized Cu while donating one electron, and an adjacent free thiol rebinds the reduced Cu(I)-S pair, retrieving the Cu-S coordination on the reactive membrane. This work presents a universal, facile approach for engineering robust SACs on water-treatment membranes and broadens the application of SACs to real-world environmental problems.
单原子催化剂(SACs)卓越的催化性能使其在能源和环境领域备受青睐。然而,将SACs用于水净化存在一定阻碍,这是由于其在工程表面的空间分布和密度有限,以及在复杂水环境中的稳定性较低。在此,我们展示了一种锚定在硫醇掺杂反应性膜上的铜单原子催化剂(Cu-SACs)用于水净化。我们证明,所制备的Cu-SACs具有Cu-S配位结构——一个铜原子由两个硫醇盐硫原子桥连,从而在膜上形成高密度的Cu-SACs(每纳米2.1±0.3个铜原子)。Cu-SACs能激活过氧化物生成羟基自由基,展现出快速的动力学过程,其反应速率比纳米颗粒铜催化剂高出40倍。在过氧化物存在的情况下,Cu功能化膜能氧化去除给水中的有机污染物,实现高效水净化。我们提供证据表明,双位点级联机制负责Cu的再生。具体而言,两个相连硫原子中的一个在提供一个电子的同时使氧化态的Cu脱离,相邻的游离硫醇重新结合还原态的Cu(I)-S对,恢复反应性膜上的Cu-S配位结构。这项工作提出了一种在水处理膜上设计稳健SACs的通用、简便方法,并将SACs的应用拓展到实际环境问题中。