Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy.
Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy.
J Chromatogr A. 2022 Jun 21;1673:463110. doi: 10.1016/j.chroma.2022.463110. Epub 2022 May 3.
Taylor-Aris dispersion represents an undesired phenomenon in pressure-driven liquid chromatography, often responsible for the unchecked increase of the Height Equivalent of the Theoretical Plate (HETP) when high throughput operating conditions are sought. Previous work on the subject showed how it is possible to contain the augmented dispersion in empty microchannels by inducing cross-sectional velocity components yielding an overall helical structure of the flow streamlines. Here, we explore the possibility of further reducing axial dispersion by devising flow conditions that give rise to chaotic streamlines. A three-dimensional steady flow generated by the combination of a pressure-driven Poiseuille flow and an electroosmotically-induced spatially periodic flow is used as a case study. Brenner's macrotransport approach is used to predict the axial dispersion coefficient of a diffusing solute in flows possessing regular, partially chaotic and globally chaotic kinematic features. Accurate Lagrangian-stochastic simulations of particle ensembles are used to validate the predictions obtained through Brenner's paradigm. Our findings suggest that the Taylor-Aris phenomenon can be altogether suppressed in the limit of globally chaotic kinematics. A theoretical interpretation of this outcome is developed by combining macrotransport theory with established results of the spectral approach to mixing in advecting-diffusing chaotic flows.
泰勒-阿里斯弥散是压力驱动液相色谱中一种不理想的现象,当寻求高通量操作条件时,通常会导致理论板高度等效(HETP)不受控制地增加。该主题的先前工作表明,通过诱导产生整体螺旋流线的横截面速度分量,可以在空微通道中包含增强的弥散。在这里,我们通过设计产生混沌流线的流动条件来探索进一步减少轴向弥散的可能性。作为案例研究,使用由压力驱动泊肃叶流和电渗流诱导的空间周期性流组合产生的三维稳态流。Brenner 的宏观输运方法用于预测具有规则、部分混沌和全局混沌运动特征的扩散溶质的轴向扩散系数。使用准确的粒子系综拉格朗日随机模拟来验证通过 Brenner 范例获得的预测。我们的研究结果表明,在全局混沌运动的极限下,泰勒-阿里斯现象可以完全被抑制。通过将宏观输运理论与在扩散混沌流中混合的谱方法的已有结果相结合,对这一结果进行了理论解释。