Suppr超能文献

使用不同类型磁共振图像的肝脏自动容积测量性能比较。

Comparison of automatic liver volumetry performance using different types of magnetic resonance images.

作者信息

Saunders Sara L, Clark Justin M, Rudser Kyle, Chauhan Anil, Ryder Justin R, Bolan Patrick J

机构信息

Department of Biomedical Engineering, University of Minnesota College of Science and Engineering, United States of America; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School Twin Cities, United States of America.

Division of Biostatistics, University of Minnesota School of Public Health, United States of America.

出版信息

Magn Reson Imaging. 2022 Sep;91:16-23. doi: 10.1016/j.mri.2022.05.002. Epub 2022 May 7.

Abstract

Measurements of liver volume from MR images can be valuable for both clinical and research applications. Automated methods using convolutional neural networks have been used successfully for this using a variety of different MR image types as input. In this work, we sought to determine which types of magnetic resonance images give the best performance when used to train convolutional neural networks for liver segmentation and volumetry. Abdominal MRI scans were performed at 3 Tesla on 42 adolescents with obesity. Scans included Dixon imaging (giving water, fat, and T2* images) and low-resolution T2-weighted scout images. Multiple convolutional neural network models using a 3D U-Net architecture were trained with different input images. Whole-liver manual segmentations were used for reference. Segmentation performance was measured using the Dice similarity coefficient (DSC) and 95% Hausdorff distance. Liver volume accuracy was evaluated using bias, precision, intraclass correlation coefficient, normalized root mean square error (NRMSE), and Bland-Altman analyses. The models trained using both water and fat images performed best, giving DSC = 0.94 and NRMSE = 4.2%. Models trained without the water image as input all performed worse, including in participants with elevated liver fat. Models using the T2-weighted scout images underperformed the Dixon-based models, but provided acceptable performance (DSC ≥ 0.92, NMRSE ≤6.6%) for use in longitudinal pediatric obesity interventions. The model using Dixon water and fat images as input gave the best performance, with results comparable to inter-reader variability and state-of-the-art methods.

摘要

从磁共振图像测量肝脏体积对临床和研究应用都很有价值。使用卷积神经网络的自动化方法已成功用于此,将各种不同类型的磁共振图像作为输入。在这项工作中,我们试图确定哪种类型的磁共振图像在用于训练卷积神经网络进行肝脏分割和体积测量时表现最佳。对42名肥胖青少年进行了3特斯拉的腹部磁共振成像扫描。扫描包括狄克逊成像(提供水、脂肪和T2*图像)和低分辨率T2加权定位图像。使用3D U-Net架构的多个卷积神经网络模型用不同的输入图像进行训练。全肝手动分割用作参考。使用骰子相似系数(DSC)和95%豪斯多夫距离来测量分割性能。使用偏差、精密度、组内相关系数、归一化均方根误差(NRMSE)和布兰德-奥特曼分析来评估肝脏体积准确性。使用水和脂肪图像训练的模型表现最佳,DSC = 0.94,NRMSE = 4.2%。没有将水图像作为输入进行训练的模型表现都较差,包括肝脏脂肪升高的参与者。使用T2加权定位图像的模型表现不如基于狄克逊成像的模型,但在纵向儿科肥胖干预中提供了可接受的性能(DSC≥0.92,NMRSE≤6.6%)。使用狄克逊水和脂肪图像作为输入的模型表现最佳,结果与阅片者间的变异性和最先进的方法相当。

相似文献

本文引用的文献

5
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验