Suppr超能文献

基于动态对比增强 MRI 的乳腺肿瘤三维分割的深度卷积神经网络的可视化集成选择。

Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI.

机构信息

Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.

Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm, Université Paris-Saclay, Centre de Recherche de l'Institut Curie, Bâtiment 101B Rue de la Chaufferie, 91400, Orsay, France.

出版信息

Eur Radiol. 2023 Feb;33(2):959-969. doi: 10.1007/s00330-022-09113-7. Epub 2022 Sep 8.

Abstract

OBJECTIVES

To develop a visual ensemble selection of deep convolutional neural networks (CNN) for 3D segmentation of breast tumors using T1-weighted dynamic contrast-enhanced (T1-DCE) MRI.

METHODS

Multi-center 3D T1-DCE MRI (n = 141) were acquired for a cohort of patients diagnosed with locally advanced or aggressive breast cancer. Tumor lesions of 111 scans were equally divided between two radiologists and segmented for training. The additional 30 scans were segmented independently by both radiologists for testing. Three 3D U-Net models were trained using either post-contrast images or a combination of post-contrast and subtraction images fused at either the image or the feature level. Segmentation accuracy was evaluated quantitatively using the Dice similarity coefficient (DSC) and the Hausdorff distance (HD95) and scored qualitatively by a radiologist as excellent, useful, helpful, or unacceptable. Based on this score, a visual ensemble approach selecting the best segmentation among these three models was proposed.

RESULTS

The mean and standard deviation of DSC and HD95 between the two radiologists were equal to 77.8 ± 10.0% and 5.2 ± 5.9 mm. Using the visual ensemble selection, a DSC and HD95 equal to 78.1 ± 16.2% and 14.1 ± 40.8 mm was reached. The qualitative assessment was excellent (resp. excellent or useful) in 50% (resp. 77%).

CONCLUSION

Using subtraction images in addition to post-contrast images provided complementary information for 3D segmentation of breast lesions by CNN. A visual ensemble selection allowing the radiologist to select the most optimal segmentation obtained by the three 3D U-Net models achieved comparable results to inter-radiologist agreement, yielding 77% segmented volumes considered excellent or useful.

KEY POINTS

• Deep convolutional neural networks were developed using T1-weighted post-contrast and subtraction MRI to perform automated 3D segmentation of breast tumors. • A visual ensemble selection allowing the radiologist to choose the best segmentation among the three 3D U-Net models outperformed each of the three models. • The visual ensemble selection provided clinically useful segmentations in 77% of cases, potentially allowing for a valuable reduction of the manual 3D segmentation workload for the radiologist and greatly facilitating quantitative studies on non-invasive biomarker in breast MRI.

摘要

目的

利用 T1 加权动态对比增强(T1-DCE)MRI 开发一种用于乳腺肿瘤三维分割的深度卷积神经网络(CNN)的可视化集成选择。

方法

采集了多中心 3D T1-DCE MRI(n=141),用于一组诊断为局部晚期或侵袭性乳腺癌的患者。111 个扫描的肿瘤病变由两位放射科医生平均分为两组进行训练分割。另外 30 个扫描由两位放射科医生独立进行分割用于测试。使用后对比图像或融合在图像或特征级别上的后对比和减影图像组合的三种 3D U-Net 模型进行训练。使用 Dice 相似系数(DSC)和 Hausdorff 距离(HD95)对分割准确性进行定量评估,并由放射科医生对分割质量进行评分,分为优秀、有用、有帮助和不可接受。基于该评分,提出了一种视觉集成方法,从这三种模型中选择最佳分割。

结果

两位放射科医生之间 DSC 和 HD95 的平均值和标准差分别为 77.8±10.0%和 5.2±5.9mm。使用视觉集成选择,达到了 78.1±16.2%和 14.1±40.8mm 的 DSC 和 HD95。定性评估为优秀(分别为优秀或有用)的比例为 50%(分别为 77%)。

结论

除了后对比图像之外,使用减影图像为 CNN 进行乳腺病变的三维分割提供了补充信息。视觉集成选择允许放射科医生从三个 3D U-Net 模型中选择最佳分割,从而获得与放射科医生间一致性相当的结果,达到 77%的分割体积被认为是优秀或有用。

关键点

  • 利用 T1 加权对比后和减影 MRI 开发深度卷积神经网络,用于自动进行乳腺肿瘤的三维分割。

  • 视觉集成选择允许放射科医生从三个 3D U-Net 模型中选择最佳分割,优于每个模型。

  • 视觉集成选择在 77%的情况下提供了有临床价值的分割,这可能有助于减少放射科医生的三维分割工作量,并极大地促进了乳腺 MRI 中无创生物标志物的定量研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a45/9889463/0213f1ae3b7d/330_2022_9113_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验