Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Puerto Madryn, Chubut, Argentina.
CONICET and Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina.
PeerJ. 2022 May 5;10:e13392. doi: 10.7717/peerj.13392. eCollection 2022.
Along with the transition to the aquatic environment, cetaceans experienced profound changes in their skeletal anatomy, especially in the skull, including the posterodorsal migration of the external bony nares, the reorganization of skull bones (= telescoping) and the development of an extreme cranial asymmetry (in odontocetes). Telescoping represents an important anatomical shift in the topological organization of cranial bones and their sutural contacts; however, the impact of these changes in the connectivity pattern and integration of the skull has never been addressed.
Here, we apply the novel framework provided by the Anatomical Network Analysis to quantify the organization and integration of cetacean skulls, and the impact of the telescoping process in the connectivity pattern of the skull. We built anatomical networks for 21 cetacean skulls (three stem cetaceans, three extinct and 10 extant mysticetes, and three extinct and two extant odontocetes) and estimated network parameters related to their anatomical integration, complexity, heterogeneity, and modularity. This dataset was analyzed in the context of a broader tetrapod skull sample as well (43 species of 13 taxonomic groups).
The skulls of crown cetaceans (Neoceti) occupy a new tetrapod skull morphospace, with better integrated, more heterogeneous and simpler skulls in comparison to other tetrapods. Telescoping adds connections and improves the integration of those bones involved in the telescoping process ( maxilla, supraoccipital) as well as other ones ( vomer) not directly affected by telescoping. Other underlying evolutionary processes (such as basicranial specializations linked with hearing/breathing adaptations) could also be responsible for the changes in the connectivity and integration of palatal bones. We also find prograde telescoped skulls of mysticetes distinct from odontocetes by an increased heterogeneity and modularity, whereas retrograde telescoped skulls of odontocetes are characterized by higher complexity. In mysticetes, as expected, the supraoccipital gains importance and centrality in comparison to odontocetes, increasing the heterogeneity of the skull network. In odontocetes, an increase in the number of connections and complexity is probably linked with the dominant movement of paired bones, such as the maxilla, in retrograde telescoping. Crown mysticetes (, , , and )are distinguished by having more integrated skulls in comparison to stem mysticetes ( and ), whereas crown odontocetes (, , , and ) have more complex skulls than stem forms (). Telescoping along with feeding, hearing and echolocation specializations could have driven the evolution of the different connectivity patterns of living lineages.
随着向水生环境的过渡,鲸目动物的骨骼解剖结构发生了深刻的变化,尤其是头骨,包括外部骨性鼻孔的后向迁移、头骨骨骼的重组( telescoping )和极度的颅骨不对称性(在齿鲸中)。 Telescoping 代表了颅骨拓扑组织及其缝合接触的重要解剖学转变;然而,这些变化对颅骨的连通模式和整合的影响从未得到过研究。
在这里,我们应用解剖网络分析提供的新框架来量化鲸目动物头骨的组织和整合,以及 telescoping 过程对颅骨连通模式的影响。我们为 21 个鲸目动物头骨(三个主干鲸目动物、三个已灭绝和 10 个现存的须鲸目动物,以及三个已灭绝和两个现存的齿鲸目动物)建立了解剖网络,并估计了与它们解剖学整合、复杂性、异质性和模块性相关的网络参数。这个数据集还在更广泛的四足动物头骨样本的背景下进行了分析(13 个分类群的 43 个物种)。
冠鲸类( Neoceti )的头骨占据了一个新的四足动物头骨形态空间,与其他四足动物相比,它们的头骨具有更好的整合性、更高的异质性和更简单的结构。 Telescoping 增加了连接,并改善了参与 telescoping 过程的骨骼(上颌骨、上枕骨)以及其他不受 telescoping 直接影响的骨骼(犁骨)的整合。其他潜在的进化过程(如与听觉/呼吸适应相关的基底颅部特化)也可能导致腭骨连通和整合的变化。我们还发现,须鲸目动物的逆行 telescoped 头骨与齿鲸目动物不同,具有更高的异质性和模块性,而逆行 telescoped 齿鲸目动物的头骨则具有更高的复杂性。在须鲸目动物中,与齿鲸目动物相比,上枕骨的重要性和中心性增加,增加了头骨网络的异质性。在齿鲸目动物中,连接数量和复杂性的增加可能与上颌骨等成对骨骼的主导运动有关,在逆行 telescoping 中,上颌骨是主要的。冠鲸目动物( 、 、 、 )与主干鲸目动物( 、 )相比,具有更整合的头骨,而冠齿鲸目动物( 、 、 、 )比主干形式具有更复杂的头骨()。随着摄食、听觉和回声定位特化的发展, telescoping 可能推动了现存谱系不同连通模式的进化。