Khan Mohammad Ehtisham, Khan Mohammad Mansoob, Cho Moo Hwan
School of Chemical Engineering, Yeungnam University Gyeongsan Gyeongbuk 38541 South Korea
Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE1410 Brunei Darussalam
RSC Adv. 2018 Apr 16;8(25):13898-13909. doi: 10.1039/c8ra00690c. eCollection 2018 Apr 11.
Noble-metal gold (Au) nanoparticles (NPs) anchored/decorated on polymeric graphitic carbon nitride (g-CN), as a nanostructure, was fabricated by a simple, single step, and an environmentally friendly synthesis approach using single-strain-developed biofilm as a reducing tool. The well deposited/anchored AuNPs on the sheet-like structure of g-CN exhibited high photoelectrochemical performance under visible-light irradiation. The Au-g-CN nanostructures behaved as a plasmonic material. The nanostructures were analyzed using standard characterization techniques. The effect of AuNPs deposition on the photoelectrochemical performance of the Au-g-CN nanostructures was examined by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), incident photon-to-current efficiency (IPCE) and cyclic voltammetry (CV) in the dark and under visible-light irradiation. The optimal charge transfer resistance for Au-g-CN nanostructures (6 mM) recorded at 18.21 ± 1.00 Ω cm and high electron transfer efficiency, as determined by EIS. The improved photoelectrochemical performance of the Au-g-CN nanostructures was attributed to the synergistic effects between the conduction band minimum of g-CN and the plasmonic band of AuNPs, including high optical absorption, uniform distribution, and nanoscale particle size. This simple, biogenic approach opens up new ways of producing photoactive Au-g-CN nanostructures for potential practical applications, such as visible light-induced photonic materials for real device development.
作为一种纳米结构,负载/修饰在聚合物石墨相氮化碳(g-CN)上的贵金属金(Au)纳米颗粒(NPs)是通过一种简单、一步且环境友好的合成方法制备的,该方法使用单菌株形成的生物膜作为还原工具。在g-CN的片状结构上良好沉积/负载的AuNPs在可见光照射下表现出高光电化学性能。Au-g-CN纳米结构表现为一种等离子体材料。使用标准表征技术对这些纳米结构进行了分析。通过线性扫描伏安法(LSV)、电化学阻抗谱(EIS)、入射光子-电流效率(IPCE)和循环伏安法(CV),在黑暗和可见光照射条件下,研究了AuNPs沉积对Au-g-CN纳米结构光电化学性能的影响。通过EIS测定,Au-g-CN纳米结构(6 mM)的最佳电荷转移电阻记录为18.21±1.00Ω·cm,且具有高电子转移效率。Au-g-CN纳米结构光电化学性能的提高归因于g-CN的导带最小值与AuNPs的等离子体带之间的协同效应,包括高光学吸收、均匀分布和纳米级粒径。这种简单的生物合成方法为生产具有光活性的Au-g-CN纳米结构开辟了新途径,可用于潜在的实际应用,如用于实际器件开发的可见光诱导光子材料。