Suppr超能文献

基于双空气孔介质谐振器的偏振无关且角度不敏感的电磁诱导透明(EIT)超材料。

Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators.

作者信息

Zhu Lei, Zhao Xin, Dong Liang, Guo Jing, He Xun Jun, Yao Zhong Min

机构信息

Communication and Electronics Engineering Institute, Qiqihar University China

College of Information and Communication Engineering, Harbin Engineering University China.

出版信息

RSC Adv. 2018 Jul 31;8(48):27342-27348. doi: 10.1039/c8ra02981d. eCollection 2018 Jul 30.

Abstract

We numerically demonstrate that an electromagnetically induced transparent (EIT) all-dielectric metamaterial with properties of polarization-independence and incident angle insensitivity can be achieved in terahertz regimes. The metamaterial cell is composed of two bi-air-hole cubes (BCs) with different sizes. The two BCs function as superradiant and subradiant resonators, respectively. Based on Mie-type destructive interferences between dielectric resonators, the EIT effect is induced at around 8.25 THz with the transmission peak close to 0.95. Moreover, the "two-particle" model is introduced to describe the EIT effect and the influence of couplings between the two BCs on the transmission spectra. Analytical results are in good agreement with numerical simulation results. Owing to the symmetry and uniformity of the metamaterial structure, polarization-independent and angle-insensitive properties can be achieved. In addition, the slow light characteristic of the metamaterial is also verified. Such an EIT scheme may have potential applications in low-loss slow light devices and bandpass filters.

摘要

我们通过数值模拟证明,在太赫兹波段可以实现一种具有偏振无关和入射角不敏感特性的电磁诱导透明(EIT)全介质超材料。超材料单元由两个不同尺寸的双空气孔立方体(BC)组成。这两个BC分别作为超辐射和亚辐射谐振器。基于介质谐振器之间的米氏型相消干涉,在8.25太赫兹左右诱导出EIT效应,传输峰值接近0.95。此外,引入“双粒子”模型来描述EIT效应以及两个BC之间的耦合对传输光谱的影响。分析结果与数值模拟结果吻合良好。由于超材料结构的对称性和均匀性,可以实现偏振无关和角度不敏感特性。此外,还验证了超材料的慢光特性。这种EIT方案可能在低损耗慢光器件和带通滤波器中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f6c/9083502/89b3ab4f4133/c8ra02981d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验