Kruger Jacob S, Dong Tao, Beckham Gregg T, Biddy Mary J
National Renewable Energy Laboratory, National Bioenergy Center 15013 Denver West Parkway Golden CO 80401 USA
RSC Adv. 2018 Jul 2;8(42):24068-24074. doi: 10.1039/c8ra02977f. eCollection 2018 Jun 27.
Renewed interest in production of 1,3-butadiene from non-petroleum sources has motivated research into novel production routes. In this study, we investigated an integrated process comprising 1-butanol dehydration over a γ-AlO catalyst to produce a mixture of linear butenes, coupled with a downstream K-doped CrO/AlO catalyst to convert the butenes into butadiene. Linear butene yields greater than 90% are achievable at 360 °C in the dehydration step, and single-pass 1,3-butadiene yields greater than 40% are achieved from 1-butene in a N atmosphere in the dehydrogenation step. In the integrated process, 1,3-butadiene yields are 10-15%. In all cases, linear C4 selectivity is greater than 90%, suggesting that 1,3-butadiene yields could be significantly improved in a recycle reactor. Doping the CrO catalyst with different metals to promote H consumption in a CO atmosphere did not have a large effect on catalyst performance compared to an undoped CrO catalyst, although doping with K in an N-diluted atmosphere and with Ni in a CO-enriched atmosphere showed slight improvement. In contrast, doping with K and Ca in a CO-enriched atmosphere showed slightly decreased performance. Similarly, employing a CO-enriched atmosphere in general did not improve 1,3-butadiene yield or selectivity compared to reactions performed in N. Overall, this study suggests that an integrated dehydration/dehydrogenation process to convert 1-butanol into 1,3-butadiene could be feasible with further catalyst and process development.
对从非石油来源生产1,3 - 丁二烯重新产生的兴趣推动了对新型生产路线的研究。在本研究中,我们研究了一个集成工艺,该工艺包括在γ - AlO催化剂上进行1 - 丁醇脱水以生产线性丁烯混合物,以及与下游的K掺杂CrO/AlO催化剂联用,将丁烯转化为丁二烯。在脱水步骤中,360℃时线性丁烯产率可超过90%,在脱氢步骤中,在氮气气氛下由1 - 丁烯实现的单程1,3 - 丁二烯产率超过40%。在集成工艺中,1,3 - 丁二烯产率为10 - 15%。在所有情况下,线性C4选择性均大于90%,这表明在循环反应器中1,3 - 丁二烯产率可能会显著提高。与未掺杂的CrO催化剂相比,在CO气氛中用不同金属掺杂CrO催化剂以促进氢消耗对催化剂性能影响不大,尽管在氮气稀释气氛中用K掺杂以及在富CO气氛中用Ni掺杂显示出轻微改善。相比之下,在富CO气氛中用K和Ca掺杂显示性能略有下降。同样,与在氮气中进行的反应相比,一般采用富CO气氛并不能提高1,3 - 丁二烯产率或选择性。总体而言,本研究表明,通过进一步的催化剂和工艺开发,将1 - 丁醇转化为1,3 - 丁二烯的集成脱水/脱氢工艺可能是可行的。