Lu Chao, Chen Xi
Department of Earth and Environmental Engineering, Columbia University New York NY 10027 USA
School of Chemical Engineering, Northwest University Xi'an 710069 China.
RSC Adv. 2019 Nov 28;9(67):39076-39081. doi: 10.1039/c9ra09254d. eCollection 2019 Nov 27.
Supercapacitors with high power density and long cycle life have shown great potential in energy storage supply for modern electronic devices. Among the component parts of supercapacitors, electrode materials with high electrical conductivity, large surface area and porosity are critical to the energy storage performances of devices. Here, we report a porous g-CN covered MOF-derived nanocarbon material with large specific surface area and high nitrogen doping level as an electrode material for supercapacitors. The large surface area provides high capacity for ion accommodation during electrochemical processes, and the high nitrogen doping facilitates electron and ion transport with extra pseudocapacitance. The supercapacitor based on the as-synthesized material delivers a high specific capacity of 106 F g at current density of 1 A g as well as good rate capability. Furthermore, the device presents good cycling stability with capacitance retention of 91% even after 10 000 cycles at 1 A g under 0.8 V. This study presents a new insight into the design of nanocomposite materials with high energy storage capability and will accelerate the practical application of supercapacitors in future.
具有高功率密度和长循环寿命的超级电容器在为现代电子设备提供储能方面展现出了巨大潜力。在超级电容器的组成部件中,具有高电导率、大表面积和孔隙率的电极材料对于器件的储能性能至关重要。在此,我们报道了一种具有大比表面积和高氮掺杂水平的多孔石墨相氮化碳包覆的金属有机框架衍生纳米碳材料作为超级电容器的电极材料。大表面积为电化学过程中的离子容纳提供了高容量,而高氮掺杂促进了电子和离子传输并带来额外的赝电容。基于所合成材料的超级电容器在1 A g的电流密度下具有106 F g的高比容量以及良好的倍率性能。此外,该器件具有良好的循环稳定性,在0.8 V下以1 A g循环10000次后电容保持率仍为91%。本研究为设计具有高储能能力的纳米复合材料提供了新的见解,并将加速超级电容器在未来的实际应用。