Suppr超能文献

与氧化物纳米片结合的脂肪酶的催化活性和热稳定性增强。

Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets.

作者信息

Yamada Akane, Kamada Kai, Ueda Taro, Hyodo Takeo, Shimizu Yasuhiro, Soh Nobuaki

机构信息

Department of Chemistry and Materials Engineering, Graduate School of Engineering, Nagasaki University Nagasaki 852-8521 Japan

Faculty of Agriculture, Saga University Saga 840-8502 Japan.

出版信息

RSC Adv. 2018 Jun 4;8(36):20347-20352. doi: 10.1039/c8ra03558j. eCollection 2018 May 30.

Abstract

The present study reports the effects of binding of lipase, which is an inexpensive digestive enzyme ( lipase) that catalyzes the hydrolysis reaction and is frequently utilized for artificial synthesis of a variety of organic molecules, to titanate nanosheets (TNSs) on their biocatalytic activities and stabilities under several lipase concentrations. TNSs were prepared through a hydrolysis reaction of titanium tetraisopropoxide (TTIP) with tetrabutylammonium hydroxide (TBAOH), resulting in formation of a colorless and transparent colloidal solution including TNSs with nanometric dimensions (hydrodynamic diameter: 5.6 nm). TNSs were bound to lipase molecules through electrostatic interaction in an aqueous phase at an appropriate pH, forming inorganic-bio nanohybrids (lipase-TNSs). The enzymatic reaction rate for hydrolysis of -nitrophenyl acetate (NPA) catalyzed by the lipase-TNSs, especially in diluted lipase concentrations, was significantly improved more than 8 times as compared with free lipase. On the other hand, it was confirmed that heat tolerance of lipase was also improved by binding to TNSs. These results suggest that the novel lipase-TNSs proposed here have combined enhancements of the catalytic activity and the anti-denaturation stability of lipase.

摘要

本研究报告了脂肪酶(一种廉价的消化酶,可催化水解反应,常用于多种有机分子的人工合成)与钛酸酯纳米片(TNSs)结合对其在几种脂肪酶浓度下的生物催化活性和稳定性的影响。通过四异丙醇钛(TTIP)与氢氧化四丁基铵(TBAOH)的水解反应制备了TNSs,形成了一种无色透明的胶体溶液,其中包含纳米尺寸的TNSs(流体动力学直径:5.6 nm)。在适当的pH值下,TNSs通过水相中的静电相互作用与脂肪酶分子结合,形成无机-生物纳米杂化物(脂肪酶-TNSs)。脂肪酶-TNSs催化对硝基苯乙酸(NPA)水解的酶促反应速率,特别是在稀释的脂肪酶浓度下,与游离脂肪酶相比显著提高了8倍以上。另一方面,证实了脂肪酶与TNSs结合后耐热性也得到了提高。这些结果表明,本文提出的新型脂肪酶-TNSs兼具脂肪酶催化活性和抗变性稳定性的增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da68/9080826/aeb9ecc29e14/c8ra03558j-s1.jpg

相似文献

1
Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets.
RSC Adv. 2018 Jun 4;8(36):20347-20352. doi: 10.1039/c8ra03558j. eCollection 2018 May 30.
2
Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid-Gas Biocatalytic Membrane Reactor.
Bioconjug Chem. 2019 Aug 21;30(8):2238-2246. doi: 10.1021/acs.bioconjchem.9b00463. Epub 2019 Jul 26.
4
Enhancing bio-catalytic activity and stability of lipase nanogel by functional ionic liquids modification.
Colloids Surf B Biointerfaces. 2020 Nov;195:111275. doi: 10.1016/j.colsurfb.2020.111275. Epub 2020 Jul 24.
6
Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles.
J Colloid Interface Sci. 2018 Jun 1;519:145-153. doi: 10.1016/j.jcis.2018.02.039. Epub 2018 Feb 14.
8
Evolution of phase and morphology of titanium dioxide induced from peroxo titanate complex aqueous solution.
J Nanosci Nanotechnol. 2010 Jan;10(1):163-9. doi: 10.1166/jnn.2010.1517.
9
Kinetic resolution of drug intermediates catalyzed by lipase B from Candida antarctica immobilized on immobead-350.
Biotechnol Prog. 2018 Jul;34(4):878-889. doi: 10.1002/btpr.2630. Epub 2018 Mar 30.
10
Visible-Light-Induced Activity Control of Peroxidase Bound to Fe-Doped Titanate Nanosheets with Nanometric Lateral Dimensions.
Bioconjug Chem. 2015 Oct 21;26(10):2161-6. doi: 10.1021/acs.bioconjchem.5b00464. Epub 2015 Oct 9.

引用本文的文献

1
Comparison of covalent and in situ immobilization of lipase A on a flexible nanoporous material.
3 Biotech. 2023 Mar;13(3):99. doi: 10.1007/s13205-023-03522-1. Epub 2023 Feb 27.

本文引用的文献

3
Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes.
J Am Chem Soc. 2016 Dec 28;138(51):16722-16730. doi: 10.1021/jacs.6b10146. Epub 2016 Dec 15.
4
Chemoenzymatic Synthesis of Proxyphylline Enantiomers.
J Org Chem. 2016 Jan 15;81(2):380-95. doi: 10.1021/acs.joc.5b01840. Epub 2016 Jan 6.
5
Enzyme- and ruthenium-catalyzed dynamic kinetic resolution of functionalized cyclic allylic alcohols.
J Org Chem. 2013 Dec 6;78(23):12114-20. doi: 10.1021/jo402086z. Epub 2013 Nov 23.
7
Control of enzyme-solid interactions via chemical modification.
Langmuir. 2012 Aug 14;28(32):11881-9. doi: 10.1021/la3022003. Epub 2012 Aug 3.
8
Lipase-embedded silica nanoparticles with oil-filled core-shell structure: stable and recyclable platforms for biocatalysts.
Chem Commun (Camb). 2012 Mar 18;48(23):2882-4. doi: 10.1039/c2cc17896f. Epub 2012 Feb 6.
9
Fe-substituted titanate nanosheets intercalated with hemoglobin for direct electrochemistry.
Biosens Bioelectron. 2009 Dec 15;25(4):948-51. doi: 10.1016/j.bios.2009.08.040. Epub 2009 Sep 1.
10
Synthesis of enantiopure 1-arylprop-2-en-1-ols and their tert-butyl carbonates.
J Org Chem. 2008 Nov 21;73(22):9148-50. doi: 10.1021/jo801874r. Epub 2008 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验